from typing import Optional import torch import torch.nn.intrinsic as nni from torch.ao.nn.sparse.quantized import linear from torch.ao.nn.sparse.quantized.utils import LinearBlockSparsePattern from torch.ao.nn.quantized.modules.utils import _quantize_weight, hide_packed_params_repr __all__ = ['Linear'] class Linear(torch.nn.Module): r""" A dynamically quantized sparse linear module with float tensor as inputs and outputs. """ _version = 1 _op_type = "sparse_dynamic" _FLOAT_MODULE = torch.nn.Linear def __init__(self, in_features, out_features, row_block_size, col_block_size, bias=True, dtype=torch.qint8): super().__init__() if dtype != torch.qint8: raise NotImplementedError("Only QINT8 is supported for Sparse Quantized Linear Dynamic") self.in_features = in_features self.out_features = out_features if bias: bias = torch.zeros(self.out_features, dtype=torch.float) else: bias = None qweight = torch._empty_affine_quantized([out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8) self._packed_params = linear.LinearPackedParams(row_block_size=row_block_size, col_block_size=col_block_size, dtype=dtype) self._packed_params.set_weight_bias(qweight, bias, row_block_size, col_block_size) def _get_name(self): return 'SparseQuantizedDynamicLinear' def extra_repr(self): return 'in_features={}, out_features={}, qscheme={}'.format( self.in_features, self.out_features, self.weight().qscheme() ) def __repr__(self): return hide_packed_params_repr(self, linear.LinearPackedParams) def forward(self, x: torch.Tensor) -> torch.Tensor: return torch.ops.sparse.qlinear_dynamic(x, self._packed_params._packed_params) def _save_to_state_dict(self, destination, prefix, keep_vars): super()._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + 'op_type'] = self._op_type def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): op_type = int(state_dict[prefix + 'op_type']) assert op_type == 'sparse', \ "Cannot load from op_type [{}], expecting [{}]".format(op_type, self._op_type) state_dict.pop(prefix + 'op_type') version = local_metadata.get('version', None) assert version <= self._version # Is this code valid? In old quantization it seemed to be used to load # older model weight = state_dict.pop(prefix + 'weight') bias = state_dict.pop(prefix + 'bias') state_dict.update({prefix + '_packed_params.weight': weight, prefix + '_packed_params.bias': bias}) super()._load_from_state_dict( state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) def _weight_bias(self): return self._packed_params._weight_bias() def weight(self): return self._weight_bias()[0] def bias(self): return self._weight_bias()[1] def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor], row_block_size: Optional[int], col_block_size: Optional[int]) -> None: assert row_block_size is not None and col_block_size is not None self.out_features = w.shape[0] self.in_features = w.shape[1] self._packed_params.set_weight_bias(w, b, row_block_size, col_block_size) @classmethod def from_float(cls, mod): r"""Create a quantized sparse dynamic module from a float module. We only care about the convert at this stage, no need for observers just yet. """ assert type(mod) == cls._FLOAT_MODULE, ' nnq.' + cls.__name__ + '.from_float only works for ' + \ cls._FLOAT_MODULE.__name__ # TODO: Need to add options to qconfig to avoid the calibration. # TODO: Add calibration for the sparsity assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined' if type(mod) == nni.LinearReLU: mod = mod[0] if mod.qconfig is not None and mod.qconfig.weight is not None: weight_observer = mod.qconfig.weight() else: # We have the circular import issues if we import the qconfig in the beginning of this file: # https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the # import until we need it. from torch.ao.quantization.qconfig import default_dynamic_qconfig weight_observer = default_dynamic_qconfig.weight() # It is important to multiply by the mask BEFORE calling the `weight_observer` # TODO (zaf): Mask might not be part of the qconfig (T83295194) weight = mod.weight if getattr(mod.qconfig, 'mask', False): weight = mod.qconfig.mask * mod.weight weight_observer(weight) dtype = weight_observer.dtype assert dtype == torch.qint8, 'Weight observer must have dtype torch.qint8' w_sc, w_zp = weight_observer.calculate_qparams() if isinstance(w_zp, torch.Tensor): assert not torch.any(w_zp.bool()), "All weight zero points must map to 0" else: assert w_zp == 0, 'Weight zero point must map to 0' qweight = _quantize_weight(weight.float(), weight_observer) row_block_size, col_block_size = LinearBlockSparsePattern.block_size() qlinear = cls(mod.in_features, mod.out_features, row_block_size, col_block_size, dtype=dtype) qlinear.set_weight_bias(qweight, mod.bias, row_block_size, col_block_size) return qlinear