U
    JºcT  ã                   @   sŠ   d dl Z d dlmZmZ d dlmZmZmZ d dlZd dl	m
Z d dlm
  m  m  mZ ddgZG dd„ deƒZG dd„ deƒZdS )é    N)ÚABCÚabstractmethod)ÚUnionÚIterableÚDictÚModelAveragerÚPeriodicModelAveragerc                   @   s&   e Zd ZdZddd„Zedd„ ƒZdS )r   aH  Base class for all model averagers.

    Args:
        process_group: The process group to be used for all-reduce.
                       If ``None``, the default process group, which
                       is created by :func:`torch.distributed.init_process_group`,
                       will be used. (default: ``None``)
    Nc                 C   s    |d k	r|nt jj| _d| _d S )Nr   )ÚdistÚgroupZWORLDÚprocess_groupÚstep)Úselfr   © r   úZ/tmp/pip-unpacked-wheel-gikjz4vx/torch/distributed/algorithms/model_averaging/averagers.pyÚ__init__   s    ÿzModelAverager.__init__c                 C   s   t ‚d S )N)ÚNotImplementedError©r   Úparamsr   r   r   Úaverage_parameters   s    z ModelAverager.average_parameters)N)Ú__name__Ú
__module__Ú__qualname__Ú__doc__r   r   r   r   r   r   r   r   
   s   	
c                       sP   e Zd ZdZd	‡ fdd„	Zeeejj	 ee
eejj	f  f dœdd„Z‡  ZS )
r   ak
  
    Averages parameters periodically after the warm-up stage.

    This can be used for running `post-local SGD <https://arxiv.org/abs/1808.07217>`_,
    by running :class:`~torch.nn.DistributedDataParallel` (DDP)
    using the subgroups created by :meth:`~torch.distributed.new_subgroups`.

    Args:
        period (int): The number of steps per model averaging.
                      Usually the period should be greater than ``1`` to reduce the communication cost.
                      Otherwise, only DDP needs to be used.
        warmup_steps (int): The number of warm-up steps. During this stage,
                            model averaging is skipped.
        process_group: The process group to be used for all-reduce.
                       If ``None``, the default process group, which
                       is created by :func:`torch.distributed.init_process_group`,
                       will be used. (default: ``None``)

    Example::

        >>> # xdoctest: +SKIP("undefined variables")
        >>> import torch
        >>> import torch.distributed as dist
        >>> import torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook as post_localSGD
        >>> import torch.distributed.algorithms.model_averaging.averagers as averagers
        >>> import torch.nn as nn
        >>>
        >>> dist.init_process_group("nccl", rank=rank, world_size=16)
        >>> torch.cuda.set_device(rank)
        >>> module = nn.Linear(1, 1, bias=False).cuda()
        >>> model = nn.parallel.DistributedDataParallel(
        >>>    module, device_ids=[rank], output_device=rank
        >>> )
        >>> # Register a post-localSGD communication hook.
        >>> state = PostLocalSGDState(process_group=None, subgroup=None, start_localSGD_iter=100)
        >>> model.register_comm_hook(state, post_localSGD_hook)
        >>>
        >>> # In the first 100 steps, run global gradient averaging like normal DDP at every step.
        >>> # After 100 steps, run model averaging every 4 steps.
        >>> # Note that ``warmup_steps`` must be the same as ``start_localSGD_iter`` used in ``PostLocalSGDState``.
        >>> averager = averagers.PeriodicModelAverager(period=4, warmup_steps=100)
        >>> for step in range(0, 200):
        >>>    optimizer.zero_grad()
        >>>    loss = loss_fn(output, labels)
        >>>    loss.backward()
        >>>    optimizer.step()
        >>>    # Will average model parameters globally every 4 steps. Thus,
        >>>    # inter-node communication only occurs every 4 iterations after
        >>>    # the initial ``warmup_steps`` period.
        >>>    averager.average_parameters(model.parameters())
    r   Nc                    sP   t ƒ  |¡ |dk rtdƒ‚|| _|dk r4tdƒ‚n|dkrFt d¡ || _d S )Nr   z3Arg ``warmup_steps`` must be a non-negative number.é   z(Arg ``period`` must be a positive value.a  When period is 1, no need to use model averaging because the communication cost of all-reducing parameters will be no less than the cost of all-reducing gradients by DistributedDataParallel in the backward pass. Therefore, only DistributedDataParallel should be used for this case.)Úsuperr   Ú
ValueErrorÚwarmup_stepsÚwarningsÚwarnÚperiod)r   r   r   r   ©Ú	__class__r   r   r   T   s    
ÿzPeriodicModelAverager.__init__)r   c                 C   sB   | j | jkr0| j | j | j dkr0t || j¡ |  j d7  _ dS )aV  
        Averages parameters or parameter groups of an optimizer if ``step`` is no less than ``warmup_steps``
        and it can be divided by ``period``, where ``step`` is increased by 1
        at each iteration in the training loop.
        Args:
            params: The parameters of a model or parameter groups of an optimizer.

        r   r   N)r   r   r   ÚutilsZ&average_parameters_or_parameter_groupsr   r   r   r   r   r   i   s    

ÿþz(PeriodicModelAverager.average_parameters)r   N)r   r   r   r   r   r   r   ÚtorchÚnnÚ	Parameterr   Ústrr   Ú__classcell__r   r   r    r   r      s
   7  ü)r   Úabcr   r   Útypingr   r   r   r#   Ztorch.distributedZdistributedr	   Z2torch.distributed.algorithms.model_averaging.utilsZ
algorithmsZmodel_averagingr"   Ú__all__r   r   r   r   r   r   Ú<module>   s   