#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math import torch from torch.utils.data.distributed import DistributedSampler class ElasticDistributedSampler(DistributedSampler): """ Sampler that restricts data loading to a subset of the dataset for elastic training. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Args: dataset: Dataset used for sampling. num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. start_index (optional): Which index of the dataset to start sampling from """ def __init__(self, dataset, num_replicas=None, rank=None, start_index=0): super().__init__(dataset=dataset, num_replicas=num_replicas, rank=rank) if start_index >= len(dataset): raise ValueError( "Start index {} should be less than dataset size {}".format( start_index, len(dataset) ) ) self.start_index = start_index self.num_samples = int( math.ceil(float(len(self.dataset) - self.start_index) / self.num_replicas) # type: ignore[arg-type] ) self.total_size = self.num_samples * self.num_replicas def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = ( torch.randperm(len(self.dataset) - self.start_index, generator=g) # type: ignore[arg-type] .add(self.start_index) .tolist() ) # add extra samples to make it evenly divisible indices += indices[: (self.total_size - len(indices))] assert len(indices) == self.total_size # subsample indices = indices[self.rank : self.total_size : self.num_replicas] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples