# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import contextlib from dataclasses import dataclass from typing import ( Any, Callable, Dict, Generator, Optional, Set, Tuple, Type, cast, ) import torch.nn as nn from torch.nn.modules.batchnorm import _BatchNorm __all__ = [ "always_wrap_policy", "lambda_auto_wrap_policy", "transformer_auto_wrap_policy", "size_based_auto_wrap_policy", "enable_wrap", "wrap", "ParamExecOrderWrapPolicy", ] def always_wrap_policy(*args, **kwargs) -> bool: """ A simple wrapper policy that always returns ``True``, i.e. when passed as the `auto_wrap_policy` into FSDP, this will result in all submodules being wrapped as distinct FSDP instances. """ return True def lambda_auto_wrap_policy( module: nn.Module, recurse: bool, unwrapped_params: int, lambda_fn: Callable ) -> bool: """ A convenient auto wrap policy to wrap submodules based on an arbitrary user function. If `lambda_fn(submodule) == True``, the submodule will be wrapped as a `wrapper_cls` unit. Return if a module should be wrapped during auto wrapping. The first three parameters are required by :func:`_recursive_wrap`. Args: module (nn.Module): The module to be considered in this decision. recurse (bool): Indicate if this is called to make a decision on whether we should recurse down a subgraph of the module structure. If False, it means this function is called to make a decision on whether we should wrap the said module. unwrapped_params (int): The number of parameters yet to be wrapped in this module. lambda_fn (Callable[nn.Module] -> bool): If this returns ``True``, this module will be wrapped by wrapper_cls individually. """ if recurse: # always recurse return True else: # if not recursing, decide whether we should wrap for the leaf node or reminder return lambda_fn(module) def transformer_auto_wrap_policy( module: nn.Module, recurse: bool, unwrapped_params: int, transformer_layer_cls: Set[Type[nn.Module]], ) -> bool: """ A convenient auto wrap policy for transformer models. If the submodule is an instance of transformer_layer_cls, the submodule will be wrapped as a FSDP unit. Otherwise, all the other remainder submodules are wrapped by the outermost FSDP unit. Right now, FSDP requires submodules that share weights to be wrapped in the same FSDP unit, this auto wrap policy can conviniently wrap the shared embeddings into the same FSDP unit for transformer models. In the near future, FSDP will support submodules that share weights to be wrapped in the separated FSDP units. Return if a module should be wrapped during FSDP auto wrapping. The first three parameters are required by :func:`_recursive_wrap`. Args: module (nn.Module): The module to be considered in this decision. recurse (bool): Indicate if this is called to make a decision on whether we should recurse down a subgraph of the module structure. If False, it means this function is called to make a decision on whether we should wrap the said module. unwrapped_params (int): The number of parameters yet to be wrapped in this module. transformer_layer_cls (int): Submodules with one of the `transformer_layer_cls` names will be wrapped as separated FSDP units """ if recurse: # always recurse return True else: # if not recursing, decide whether we should wrap for the leaf node or reminder return isinstance(module, tuple(transformer_layer_cls)) def _wrap_batchnorm_individually( module: nn.Module, recurse: bool, *args, **kwargs, ) -> bool: """ A policy that wraps ``BatchNorm`` instances in their own FSDP unit. """ if recurse: # always recurse return True else: # if not recursing, decide whether we should wrap based on whether it is a # BN layer or not. return isinstance(module, _BatchNorm) def _or_policy( module: nn.Module, recurse: bool, unwrapped_params: int, policies, ) -> bool: """ A policy that wraps ``module`` if any policy in the passed in iterable of ``policies`` returns ``True``. """ return any( policy(module, recurse, unwrapped_params) for policy in policies ) def size_based_auto_wrap_policy( module: nn.Module, recurse: bool, unwrapped_params: int, # These are customizable for this policy function. min_num_params: int = int(1e8), force_leaf_modules: Optional[Set[Type[nn.Module]]] = None, exclude_wrap_modules: Optional[Set[Type[nn.Module]]] = None, ) -> bool: """A size based auto_wrap_policy function for FSDP API. Return if a module should be wrapped during FSDP auto wrapping. The first three parameters are used by :func:`_recursive_wrap`. If you write a custom version of this policy function, your version needs to at least accept the first three parameters and free to do whatever you want in the function. Args: module (nn.Module): The module to be considered in this decision. recurse (bool): Indicate if this is called to make a decision on whether we should recurse down a subgraph of the module structure. If False, it means this function is called to make a decision on whether we should wrap the said module. unwrapped_params (int): The number of parameters yet to be wrapped in this module. min_num_params (int): Customizable policy input. It controls the size threshold on how big should a module be to be considered wrapped. force_leaf_modules (Set[Type[nn.Module]]): set of module types to keep as leaves, i.e., their children will never be wrapped. exclude_wrap_modules (Set[Type[nn.Module]]): Customizable set of module types to be excluded in wrapping. """ force_leaf_modules = ( size_based_auto_wrap_policy.FORCE_LEAF_MODULES # type: ignore[attr-defined] if force_leaf_modules is None else force_leaf_modules ) exclude_wrap_modules = ( size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES # type: ignore[attr-defined] if exclude_wrap_modules is None else exclude_wrap_modules ) is_large = unwrapped_params >= min_num_params if recurse: # We should recurse if the module is big enough but not in force_leaf_modules list. return is_large and not isinstance(module, tuple(force_leaf_modules)) else: # If we are not recursing, determine if we should wrap. return is_large and not isinstance(module, tuple(exclude_wrap_modules)) # Set those defaults to the size_based_auto_wrap_policy function. Make them easy to be imported. size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES = {nn.ModuleList, nn.ModuleDict} # type: ignore[attr-defined] size_based_auto_wrap_policy.FORCE_LEAF_MODULES = {nn.MultiheadAttention} # type: ignore[attr-defined] @contextlib.contextmanager def enable_wrap( *, wrapper_cls: Any, **wrapper_kwargs: Any ) -> Generator[None, None, None]: """ Context manager to wrap modules using a wrapper. Useful for when you'd like to apply the same configuration arguments to all child modules that you wrap. A particularly important use case is wrapping large layers so that they get sharded (in-place) during initialization, to avoid running out of system memory. Large layers can indicate that they should be sharded via the ``wrap`` annotation and this context manager can provide the exact configuration for these nested instances. Usage:: with enable_wrap(wrapper_cls, **params): # Wraps layer in FSDP by default if within context self.l1 = wrap(torch.nn.Linear(5, 5)) Args: wrapper_cls: Class that `wrap` annotation will `wrap` modules with, such as `FullyShardedDataParallel`. **wrapper_kwargs: Configuration settings that will be passed to all ``wrap`` instances inside the context """ kwargs = { **{"wrapper_cls": wrapper_cls}, **wrapper_kwargs, } with _ConfigAutoWrap(**kwargs): yield def wrap(module: nn.Module, **wrap_overrides: Any) -> nn.Module: """ Annotate that a module should be wrapped. Annotated modules will only be wrapped if inside of an :func:`enable_wrap` context manager. This allows a module to be initialized both with and without a wrapper without code change. The class that this function wraps the passed in ``nn.Module`` with is the passed in ``wrapper_cls`` argument into ``enable_wrap``. Both ``enable_wrap`` and ``wrap`` can take in kwargs specifying how to construct the ``wrapper_cls`` instance. In the case of duplicate kwargs in ``enable_wrap`` and ``wrap``, the argument passed into ``wrap`` will be respected. Usage:: with enable_wrap(wrapper_cls=FSDP, **fsdp_config): # Wraps layer in FSDP by default if within context self.l1 = wrap(torch.nn.Linear(5, 5)) Args: module (nn.Module): module to wrap (if in :func:`enable_wrap` context) **wrap_overrides: configuration overrides that will take priority over the values provided by the :func:`enable_wrap` context """ if _ConfigAutoWrap.in_autowrap_context: assert _ConfigAutoWrap.wrapper_cls is not None wrap_overrides = {**_ConfigAutoWrap.kwargs, **wrap_overrides} return _wrap( module, _ConfigAutoWrap.wrapper_cls, **wrap_overrides, ) return module @dataclass class ParamExecOrderWrapPolicy: """ This is the class used for the wrapping policy that wraps parameters and performs the communication scheduling based on the parameter execution order in the forward pass (also called non-recursive wrapping policy). The policy contains multiple wraps. Each wrap contains original parameters that will be executed together, and the wrap transfers these parameters into one ``FlattenParameter``. In both forward and the backward passes, the sharded parameters in each wrap will be gathered just before these parameters are used in the passes. These parameters will then be reshaded once they have been used. TODO (linjianma): For now, the parameters contained in each wrap of ``ParamExecOrderWrapPolicy`` are the parameters in each wrap of the ``init_policy`` (a recursive wrapping policy). Later we will wrap parameters based on bucket size. Args: init_policy (Callable): The initial recursive wrapping policy used to guide the wrapping of this policy. If tracing_config is none, in the first forward and backward iteration, ``init_policy`` is used to record parameter execution order. Otherwise, init_policy is only used in FSDP constructor for module level wrapping. The default ``always_wrap_policy`` might not be the best choice for every model. For example, for transformer based models, setting ``transformer_auto_wrap_policy`` as the ``init_policy`` will guarantee wrapping each transformer layer into one FSDP unit, and can be easily combined with checkpointing within each transformer layer. tracing_config (Optional[TracingConfig]): The configuration used to perform symbolic tracing at FSDP constructor to get the module and parameter execution order. The type of ``tracing_config`` needs to be either ``None`` or ``TracingConfig``. If set as ``None``, then symbolic tracing is not enabled, and one forward as well as backward iteration are needed to get the parameter execution order. ..warning :: Note that not all modules can be successfully traced when ``tracing_config`` is not None and symbolic tracing is enabled. The two cases below may be unable to trace: 1. when there is a data-dependent branch, 2. when the forward pass contains operators that don't support ``torch.fx.Proxy`` as the input type (e.g. ``arange``, ``zeros``, ``ones``, ``full``, ``full_like``, ``eye``, ``empty``, ``tensor``). For those cases, users can set ``tracing_config = None`` to disable symbolic tracing. """ init_policy: Callable = always_wrap_policy tracing_config: Any = None def _wrap(module: nn.Module, wrapper_cls: Callable, **kwargs) -> nn.Module: assert wrapper_cls is not None if hasattr(module, '_wrap_overrides'): # If module has a _wrap_overrides attribute, we force overriding the # FSDP config with these attributes for this module. Currently this # is only used to disable mixed precision for BatchNorm when # auto_wrapping. overrides = {**kwargs, **module._wrap_overrides} # type: ignore[arg-type] return wrapper_cls(module, **overrides) return wrapper_cls(module, **kwargs) def _recursive_wrap( module: nn.Module, auto_wrap_policy: Callable, wrapper_cls: Callable, ignored_modules: Set[nn.Module], ignored_params: Set[nn.Parameter], only_wrap_children: bool = False, **kwargs: Any ) -> Tuple[nn.Module, int]: """ Automatically wrap child modules of *module* that meet the given criteria with :func:`auto_wrap`. Does not rely on _ConfigAutoWrap. Args: module (nn.Module): module to recursively wrap auto_wrap_policy (Callable): A callable specifying a policy to recursively wrap layers with FSDP. ignored_modules (Set[torch.nn.Module]): Modules to ignore when wrapping. ignored_params (Set[torch.nn.Parameter]): Parameters to ignore when wrapping; these should be the parameters contained in the modules in ``ignored_modules``. Returns: (nn.Module, int): Wrapped module and the number parameters wrapped recursively. """ assert auto_wrap_policy is not None, "Must specify auto_wrap_policy." assert wrapper_cls is not None, "Must specify wrapper_cls" # Make sure no child is already wrapped. for _, child in module.named_modules(): if child in ignored_modules: continue try: assert not isinstance(child, cast(type, wrapper_cls)) except TypeError: # wrapper_cls is a function as opposed to a class type, just bypass above check. pass # We count all params, assuming none of them are already wrapped. num_params = sum( p.numel() for p in module.parameters() if p not in ignored_params ) assert auto_wrap_policy is not None if auto_wrap_policy(module=module, recurse=True, unwrapped_params=num_params): total_wrapped_params = 0 # Iterate through the children, recursively wrap if necessary for name, child in module.named_children(): if child in ignored_modules: continue wrapped_child, num_wrapped_params = _recursive_wrap( module=child, auto_wrap_policy=auto_wrap_policy, wrapper_cls=wrapper_cls, ignored_modules=ignored_modules, ignored_params=ignored_params, **kwargs, ) setattr(module, name, wrapped_child) # Keep track of how many parameters have been wrapped total_wrapped_params += num_wrapped_params # decide if we need to wrap the current module, # since the left over parameters exceed the number of params to wrap remainder = num_params - total_wrapped_params if not only_wrap_children and auto_wrap_policy( module=module, recurse=False, unwrapped_params=remainder ): # Leaf node or final wrapping of the remainder both happen here. return _wrap(module, wrapper_cls, **kwargs), num_params else: return module, total_wrapped_params return module, 0 class _ConfigAutoWrap: """ Helper class to wrap modules based on default config args via a context manager. See :func:`enable_wrap` for more information. """ in_autowrap_context: bool = False # Context flag wrapper_cls: Optional[Callable] = None # The wrapper class kwargs: Dict[str, Any] = {} # Wrapper's args def __init__(self, **kwargs: Dict[str, Any]): self.kwargs = kwargs @staticmethod def enable_autowrap_context(kwargs: Any) -> None: if _ConfigAutoWrap.in_autowrap_context: raise NotImplementedError( "You are already within an autowrap context and we currently do not supported nested autowrap." ) _ConfigAutoWrap.in_autowrap_context = True # Get and save the wrapper cls for the context. assert ( "wrapper_cls" in kwargs.keys() ), "Expected to pass in wrapper_cls arg into _ConfigAutoWrap." _ConfigAutoWrap.wrapper_cls = cast(Callable, kwargs["wrapper_cls"]) del kwargs["wrapper_cls"] # Save the rest. _ConfigAutoWrap.kwargs = kwargs @staticmethod def disable_autowrap_context() -> None: _ConfigAutoWrap.in_autowrap_context = False _ConfigAutoWrap.wrapper_cls = None _ConfigAutoWrap.kwargs = {} def __enter__(self) -> None: self.enable_autowrap_context(self.kwargs) def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None: self.disable_autowrap_context()