U
    Jc                     @   sl   U d dl mZmZmZmZ d dlZd dlm  mZ	 d dlm
Z
 g Zee ed< ejjG dd deZdS )    )ListDictOptionalTupleN)Tensor__all__c                   @   sd   e Zd Zdee eeeef eeeeeeed
ddZee	e d	d
dZ
ee	e  dddZdS )_FunctionalAdamMbP?g?g+?:0yE>        F)
paramslrbetasepsweight_decayamsgradmaximizeforeachfused_allow_empty_param_listc                 C   s  d|kst d|d|ks,t d|d|d   krDdk sXn t d|d d|d   krpdk sn t d|d d|kst d	||||d |d |d
| _|| _|| _|| _|	| _tj	t
tjt
ttjf f i | _t|dkr|
st dd|i| _d S )Nr   zInvalid learning rate: {}zInvalid epsilon value: {}r   g      ?z%Invalid beta parameter at index 0: {}   z%Invalid beta parameter at index 1: {}zInvalid weight_decay value: {})r   r   beta1beta2r   z%optimizer got an empty parameter listr   )
ValueErrorformatdefaultsr   r   r   r   torchjitZannotater   r   strstatelenparam_group)selfr   r   r   r   r   r   r   r   r   r    r$   K/tmp/pip-unpacked-wheel-gikjz4vx/torch/distributed/optim/functional_adam.py__init__   s0    $z_FunctionalAdam.__init__)paramgradc                 C   sZ  |g}g }g }g }g }g }g }	|dk	r:| | | | || jkri | j|< | j| }
td|
d< tj|tjd|
d< tj|tjd|
d< | jrtj|tjd|
d< | j| }
| |
d  | |
d  | jr| |
d  |	 |
d  t X tj	||||||	| j| j
| jd | jd	 | jd
 | jd | jd | j| jddd W 5 Q R X dS )zo
        Similar to step, but operates on a single parameter and optionally a
        gradient tensor.
        Nr   stepZmemory_formatexp_avg
exp_avg_sqmax_exp_avg_sqr   r   r   r   r   r   r   r   r   r   r   r   r   r   Z
grad_scaleZ	found_inf)appendr    r   tensor
zeros_likepreserve_formatr   no_gradFadamr   r   r   r   )r#   r'   r(   r   params_with_gradgradsexp_avgsexp_avg_sqsmax_exp_avg_sqsstate_stepsr    r$   r$   r%   
step_param@   sV    






z_FunctionalAdam.step_param)	gradientsc                 C   s  | j d }g }g }g }g }g }g }t|t|krXtddt| d dt|  t| j d |D ]\}	}
|
d k	rh||	 ||
 |	| jkri | j|	< | j|	 }td|d< tj|	tj	d|d	< tj|	tj	d|d
< | j
rtj|	tj	d|d< | j|	 }||d	  ||d
  | j
r6||d  ||d  qht X tj||||||| j
| j| jd | jd | jd | jd | jd | j| jd d d W 5 Q R X d S )Nr   zEthe gradients passed in does not equal to the size of the parameters!zParams length: z. zGradients length: r   r)   r*   r+   r,   r-   r   r   r   r   r   r.   )r"   r!   r   zipr/   r    r   r0   r1   r2   r   r3   r4   r5   r   r   r   r   )r#   r=   r   r6   r7   r8   r9   r:   r;   r'   Zgradientr    r$   r$   r%   r)   s   sh    







z_FunctionalAdam.stepN)	r	   r
   r   r   FFFFF)__name__
__module____qualname__r   r   floatr   boolr&   r   r<   r)   r$   r$   r$   r%   r      s.            
,3r   )typingr   r   r   r   r   Ztorch.optim._functionalZoptimZ_functionalr4   r   r   r   __annotations__r   scriptobjectr   r$   r$   r$   r%   <module>   s    