from typing import List, Dict, Optional import torch import torch.optim._functional as F from torch import Tensor __all__ : List[str] = [] # Define a TorchScript compatible Functional RMSprop Optimizer # where we use these optimizer in a functional way. # Instead of using the `param.grad` when updating parameters, # we explicitly allow the distributed optimizer pass gradients to # the `step` function. In this way, we could separate the gradients # and parameters and allow multithreaded trainer to update the # parameters without data traces on accumulating to the same .grad. # NOTE: This should be only used by distributed optimizer internals # and not meant to expose to the user. @torch.jit.script class _FunctionalRMSprop(object): def __init__( self, params: List[Tensor], lr: float = 1e-2, alpha: float = 0.99, eps: float = 1e-8, weight_decay: float = 0.0, momentum: float = 0.0, centered: bool = False, foreach: bool = False, maximize: bool = False, _allow_empty_param_list: bool = False, ): self.defaults = { "lr": lr, "alpha": alpha, "eps": eps, "weight_decay": weight_decay, "momentum": momentum, } self.centered = centered self.foreach = foreach self.maximize = maximize if len(params) == 0 and not _allow_empty_param_list: raise ValueError("optimizer got an empty parameter list") # NOTE: we only have one param_group and don't allow user to add additional # param group as it's not a common use case. self.param_group = {"params": params} self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {}) def step(self, gradients: List[Optional[Tensor]]): params = self.param_group['params'] params_with_grad = [] grads = [] square_avgs = [] grad_avgs = [] momentum_buffer_list = [] lr = self.defaults['lr'] alpha = self.defaults['alpha'] eps = self.defaults['eps'] momentum = self.defaults['momentum'] weight_decay = self.defaults['weight_decay'] if len(params) != len(gradients): raise ValueError( "the gradients passed in does not equal to the size of the parameters!" + f"Params length: {len(params)}. " + f"Gradients length: {len(gradients)}" ) for param, gradient in zip(params, gradients): if gradient is not None: params_with_grad.append(param) grads.append(gradient) # Lazy state initialization if param not in self.state: self.state[param] = {} state = self.state[param] state['step'] = torch.tensor(0.0) state['square_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format) if momentum > 0: state['momentum_buffer'] = torch.zeros_like(param, memory_format=torch.preserve_format) if self.centered: state['grad_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format) state = self.state[param] square_avgs.append(state['square_avg']) if momentum > 0: momentum_buffer_list.append(state['momentum_buffer']) if self.centered: grad_avgs.append(state['grad_avg']) state['step'] += 1 with torch.no_grad(): F.rmsprop(params_with_grad, grads, square_avgs, grad_avgs, momentum_buffer_list, lr=lr, alpha=alpha, eps=eps, weight_decay=weight_decay, momentum=momentum, centered=self.centered, foreach=self.foreach, maximize=self.maximize)