#pragma once // DO NOT DEFINE STATIC DATA IN THIS HEADER! // See Note [Do not compile initializers with AVX] #include #include #include #include #include namespace at { namespace vec { inline namespace CPU_CAPABILITY { #ifdef CPU_CAPABILITY_AVX2 struct Vectorizedi { protected: __m256i values; static inline __m256i invert(const __m256i& v) { const auto ones = _mm256_set1_epi64x(-1); return _mm256_xor_si256(ones, v); } public: Vectorizedi() {} Vectorizedi(__m256i v) : values(v) {} operator __m256i() const { return values; } }; #else struct Vectorizedi {}; // dummy definition to make Vectorizedi always defined #endif // CPU_CAPABILITY_AVX2 #ifdef CPU_CAPABILITY_AVX2 template <> class Vectorized : public Vectorizedi { private: static const Vectorized ones; public: using value_type = int64_t; using size_type = int; static constexpr size_type size() { return 4; } using Vectorizedi::Vectorizedi; Vectorized() {} Vectorized(int64_t v) { values = _mm256_set1_epi64x(v); } Vectorized(int64_t val1, int64_t val2, int64_t val3, int64_t val4) { values = _mm256_setr_epi64x(val1, val2, val3, val4); } template static Vectorized blend(Vectorized a, Vectorized b) { __at_align__ int64_t tmp_values[size()]; a.store(tmp_values); if (mask & 0x01) tmp_values[0] = _mm256_extract_epi64(b.values, 0); if (mask & 0x02) tmp_values[1] = _mm256_extract_epi64(b.values, 1); if (mask & 0x04) tmp_values[2] = _mm256_extract_epi64(b.values, 2); if (mask & 0x08) tmp_values[3] = _mm256_extract_epi64(b.values, 3); return loadu(tmp_values); } static Vectorized blendv(const Vectorized& a, const Vectorized& b, const Vectorized& mask) { return _mm256_blendv_epi8(a.values, b.values, mask.values); } template static Vectorized arange(int64_t base = 0, step_t step = static_cast(1)) { return Vectorized(base, base + step, base + 2 * step, base + 3 * step); } static Vectorized set(Vectorized a, Vectorized b, int64_t count = size()) { switch (count) { case 0: return a; case 1: return blend<1>(a, b); case 2: return blend<3>(a, b); case 3: return blend<7>(a, b); } return b; } static Vectorized loadu(const void* ptr) { return _mm256_loadu_si256(reinterpret_cast(ptr)); } static Vectorized loadu(const void* ptr, int64_t count) { __at_align__ int64_t tmp_values[size()]; // Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502 // for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two // instructions while a loop would be compiled to one instruction. for (const auto i : c10::irange(size())) { tmp_values[i] = 0; } std::memcpy(tmp_values, ptr, count * sizeof(int64_t)); return loadu(tmp_values); } void store(void* ptr, int count = size()) const { if (count == size()) { // ptr need not to be aligned here. See // https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html _mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values); } else if (count > 0) { __at_align__ int64_t tmp_values[size()]; _mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values); std::memcpy(ptr, tmp_values, count * sizeof(int64_t)); } } const int64_t& operator[](int idx) const = delete; int64_t& operator[](int idx) = delete; Vectorized abs() const { auto zero = _mm256_set1_epi64x(0); auto is_larger = _mm256_cmpgt_epi64(zero, values); auto inverse = _mm256_xor_si256(values, is_larger); return _mm256_sub_epi64(inverse, is_larger); } Vectorized real() const { return *this; } Vectorized imag() const { return _mm256_set1_epi64x(0); } Vectorized conj() const { return *this; } Vectorized frac() const; Vectorized neg() const; Vectorized operator==(const Vectorized& other) const { return _mm256_cmpeq_epi64(values, other.values); } Vectorized operator!=(const Vectorized& other) const { return invert(_mm256_cmpeq_epi64(values, other.values)); } Vectorized operator<(const Vectorized& other) const { return _mm256_cmpgt_epi64(other.values, values); } Vectorized operator<=(const Vectorized& other) const { return invert(_mm256_cmpgt_epi64(values, other.values)); } Vectorized operator>(const Vectorized& other) const { return _mm256_cmpgt_epi64(values, other.values); } Vectorized operator>=(const Vectorized& other) const { return invert(_mm256_cmpgt_epi64(other.values, values)); } Vectorized eq(const Vectorized& other) const; Vectorized ne(const Vectorized& other) const; Vectorized gt(const Vectorized& other) const; Vectorized ge(const Vectorized& other) const; Vectorized lt(const Vectorized& other) const; Vectorized le(const Vectorized& other) const; }; template <> class Vectorized : public Vectorizedi { private: static const Vectorized ones; public: using value_type = int32_t; static constexpr int size() { return 8; } using Vectorizedi::Vectorizedi; Vectorized() {} Vectorized(int32_t v) { values = _mm256_set1_epi32(v); } Vectorized(int32_t val1, int32_t val2, int32_t val3, int32_t val4, int32_t val5, int32_t val6, int32_t val7, int32_t val8) { values = _mm256_setr_epi32(val1, val2, val3, val4, val5, val6, val7, val8); } template static Vectorized blend(Vectorized a, Vectorized b) { return _mm256_blend_epi32(a, b, mask); } static Vectorized blendv(const Vectorized& a, const Vectorized& b, const Vectorized& mask) { return _mm256_blendv_epi8(a.values, b.values, mask.values); } template static Vectorized arange(int32_t base = 0, step_t step = static_cast(1)) { return Vectorized( base, base + step, base + 2 * step, base + 3 * step, base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step); } static Vectorized set(Vectorized a, Vectorized b, int32_t count = size()) { switch (count) { case 0: return a; case 1: return blend<1>(a, b); case 2: return blend<3>(a, b); case 3: return blend<7>(a, b); case 4: return blend<15>(a, b); case 5: return blend<31>(a, b); case 6: return blend<63>(a, b); case 7: return blend<127>(a, b); } return b; } static Vectorized loadu(const void* ptr) { return _mm256_loadu_si256(reinterpret_cast(ptr)); } static Vectorized loadu(const void* ptr, int32_t count) { __at_align__ int32_t tmp_values[size()]; // Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502 // for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two // instructions while a loop would be compiled to one instruction. for (const auto i : c10::irange(size())) { tmp_values[i] = 0; } std::memcpy(tmp_values, ptr, count * sizeof(int32_t)); return loadu(tmp_values); } void store(void* ptr, int count = size()) const { if (count == size()) { // ptr need not to be aligned here. See // https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html _mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values); } else if (count > 0) { __at_align__ int32_t tmp_values[size()]; _mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values); std::memcpy(ptr, tmp_values, count * sizeof(int32_t)); } } const int32_t& operator[](int idx) const = delete; int32_t& operator[](int idx) = delete; Vectorized abs() const { return _mm256_abs_epi32(values); } Vectorized real() const { return *this; } Vectorized imag() const { return _mm256_set1_epi32(0); } Vectorized conj() const { return *this; } Vectorized frac() const; Vectorized neg() const; Vectorized operator==(const Vectorized& other) const { return _mm256_cmpeq_epi32(values, other.values); } Vectorized operator!=(const Vectorized& other) const { return invert(_mm256_cmpeq_epi32(values, other.values)); } Vectorized operator<(const Vectorized& other) const { return _mm256_cmpgt_epi32(other.values, values); } Vectorized operator<=(const Vectorized& other) const { return invert(_mm256_cmpgt_epi32(values, other.values)); } Vectorized operator>(const Vectorized& other) const { return _mm256_cmpgt_epi32(values, other.values); } Vectorized operator>=(const Vectorized& other) const { return invert(_mm256_cmpgt_epi32(other.values, values)); } Vectorized eq(const Vectorized& other) const; Vectorized ne(const Vectorized& other) const; Vectorized gt(const Vectorized& other) const; Vectorized ge(const Vectorized& other) const; Vectorized lt(const Vectorized& other) const; Vectorized le(const Vectorized& other) const; }; template <> inline void convert(const int32_t *src, float *dst, int64_t n) { int64_t i; // int32_t and float have same size #ifndef _MSC_VER # pragma unroll #endif for (i = 0; i <= (n - Vectorized::size()); i += Vectorized::size()) { auto input_vec = _mm256_loadu_si256(reinterpret_cast(src + i)); auto output_vec = _mm256_cvtepi32_ps(input_vec); _mm256_storeu_ps(reinterpret_cast(dst + i), output_vec); } #ifndef _MSC_VER # pragma unroll #endif for (; i < n; i++) { dst[i] = static_cast(src[i]); } } template <> inline void convert(const int32_t *src, double *dst, int64_t n) { int64_t i; // int32_t has half the size of double #ifndef _MSC_VER # pragma unroll #endif for (i = 0; i <= (n - Vectorized::size()); i += Vectorized::size()) { auto input_128_vec = _mm_loadu_si128(reinterpret_cast(src + i)); auto output_vec = _mm256_cvtepi32_pd(input_128_vec); _mm256_storeu_pd(reinterpret_cast(dst + i), output_vec); } #ifndef _MSC_VER # pragma unroll #endif for (; i < n; i++) { dst[i] = static_cast(src[i]); } } template <> class Vectorized : public Vectorizedi { private: static const Vectorized ones; public: using value_type = int16_t; static constexpr int size() { return 16; } using Vectorizedi::Vectorizedi; Vectorized() {} Vectorized(int16_t v) { values = _mm256_set1_epi16(v); } Vectorized(int16_t val1, int16_t val2, int16_t val3, int16_t val4, int16_t val5, int16_t val6, int16_t val7, int16_t val8, int16_t val9, int16_t val10, int16_t val11, int16_t val12, int16_t val13, int16_t val14, int16_t val15, int16_t val16) { values = _mm256_setr_epi16(val1, val2, val3, val4, val5, val6, val7, val8, val9, val10, val11, val12, val13, val14, val15, val16); } template static Vectorized blend(Vectorized a, Vectorized b) { __at_align__ int16_t tmp_values[size()]; a.store(tmp_values); if (mask & 0x01) tmp_values[0] = _mm256_extract_epi16(b.values, 0); if (mask & 0x02) tmp_values[1] = _mm256_extract_epi16(b.values, 1); if (mask & 0x04) tmp_values[2] = _mm256_extract_epi16(b.values, 2); if (mask & 0x08) tmp_values[3] = _mm256_extract_epi16(b.values, 3); if (mask & 0x10) tmp_values[4] = _mm256_extract_epi16(b.values, 4); if (mask & 0x20) tmp_values[5] = _mm256_extract_epi16(b.values, 5); if (mask & 0x40) tmp_values[6] = _mm256_extract_epi16(b.values, 6); if (mask & 0x80) tmp_values[7] = _mm256_extract_epi16(b.values, 7); if (mask & 0x100) tmp_values[8] = _mm256_extract_epi16(b.values, 8); if (mask & 0x200) tmp_values[9] = _mm256_extract_epi16(b.values, 9); if (mask & 0x400) tmp_values[10] = _mm256_extract_epi16(b.values, 10); if (mask & 0x800) tmp_values[11] = _mm256_extract_epi16(b.values, 11); if (mask & 0x1000) tmp_values[12] = _mm256_extract_epi16(b.values, 12); if (mask & 0x2000) tmp_values[13] = _mm256_extract_epi16(b.values, 13); if (mask & 0x4000) tmp_values[14] = _mm256_extract_epi16(b.values, 14); if (mask & 0x8000) tmp_values[15] = _mm256_extract_epi16(b.values, 15); return loadu(tmp_values); } static Vectorized blendv(const Vectorized& a, const Vectorized& b, const Vectorized& mask) { return _mm256_blendv_epi8(a.values, b.values, mask.values); } template static Vectorized arange(int16_t base = 0, step_t step = static_cast(1)) { return Vectorized( base, base + step, base + 2 * step, base + 3 * step, base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step, base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step, base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step); } static Vectorized set(Vectorized a, Vectorized b, int16_t count = size()) { switch (count) { case 0: return a; case 1: return blend<1>(a, b); case 2: return blend<3>(a, b); case 3: return blend<7>(a, b); case 4: return blend<15>(a, b); case 5: return blend<31>(a, b); case 6: return blend<63>(a, b); case 7: return blend<127>(a, b); case 8: return blend<255>(a, b); case 9: return blend<511>(a, b); case 10: return blend<1023>(a, b); case 11: return blend<2047>(a, b); case 12: return blend<4095>(a, b); case 13: return blend<8191>(a, b); case 14: return blend<16383>(a, b); case 15: return blend<32767>(a, b); } return b; } static Vectorized loadu(const void* ptr) { return _mm256_loadu_si256(reinterpret_cast(ptr)); } static Vectorized loadu(const void* ptr, int16_t count) { __at_align__ int16_t tmp_values[size()]; // Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502 // for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two // instructions while a loop would be compiled to one instruction. for (const auto i : c10::irange(size())) { tmp_values[i] = 0; } std::memcpy(tmp_values, ptr, count * sizeof(int16_t)); return loadu(tmp_values); } void store(void* ptr, int count = size()) const { if (count == size()) { // ptr need not to be aligned here. See // https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html _mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values); } else if (count > 0) { __at_align__ int16_t tmp_values[size()]; _mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values); std::memcpy(ptr, tmp_values, count * sizeof(int16_t)); } } const int16_t& operator[](int idx) const = delete; int16_t& operator[](int idx) = delete; Vectorized abs() const { return _mm256_abs_epi16(values); } Vectorized real() const { return *this; } Vectorized imag() const { return _mm256_set1_epi16(0); } Vectorized conj() const { return *this; } Vectorized frac() const; Vectorized neg() const; Vectorized operator==(const Vectorized& other) const { return _mm256_cmpeq_epi16(values, other.values); } Vectorized operator!=(const Vectorized& other) const { return invert(_mm256_cmpeq_epi16(values, other.values)); } Vectorized operator<(const Vectorized& other) const { return _mm256_cmpgt_epi16(other.values, values); } Vectorized operator<=(const Vectorized& other) const { return invert(_mm256_cmpgt_epi16(values, other.values)); } Vectorized operator>(const Vectorized& other) const { return _mm256_cmpgt_epi16(values, other.values); } Vectorized operator>=(const Vectorized& other) const { return invert(_mm256_cmpgt_epi16(other.values, values)); } Vectorized eq(const Vectorized& other) const; Vectorized ne(const Vectorized& other) const; Vectorized gt(const Vectorized& other) const; Vectorized ge(const Vectorized& other) const; Vectorized lt(const Vectorized& other) const; Vectorized le(const Vectorized& other) const; }; template <> class Vectorized : public Vectorizedi { private: static const Vectorized ones; public: using value_type = int8_t; static constexpr int size() { return 32; } using Vectorizedi::Vectorizedi; Vectorized() {} Vectorized(int8_t v) { values = _mm256_set1_epi8(v); } Vectorized(int8_t val1, int8_t val2, int8_t val3, int8_t val4, int8_t val5, int8_t val6, int8_t val7, int8_t val8, int8_t val9, int8_t val10, int8_t val11, int8_t val12, int8_t val13, int8_t val14, int8_t val15, int8_t val16, int8_t val17, int8_t val18, int8_t val19, int8_t val20, int8_t val21, int8_t val22, int8_t val23, int8_t val24, int8_t val25, int8_t val26, int8_t val27, int8_t val28, int8_t val29, int8_t val30, int8_t val31, int8_t val32) { values = _mm256_setr_epi8(val1, val2, val3, val4, val5, val6, val7, val8, val9, val10, val11, val12, val13, val14, val15, val16, val17, val18, val19, val20, val21, val22, val23, val24, val25, val26, val27, val28, val29, val30, val31, val32); } template static Vectorized blend(Vectorized a, Vectorized b) { __at_align__ int8_t tmp_values[size()]; a.store(tmp_values); if (mask & 0x01) tmp_values[0] = _mm256_extract_epi8(b.values, 0); if (mask & 0x02) tmp_values[1] = _mm256_extract_epi8(b.values, 1); if (mask & 0x04) tmp_values[2] = _mm256_extract_epi8(b.values, 2); if (mask & 0x08) tmp_values[3] = _mm256_extract_epi8(b.values, 3); if (mask & 0x10) tmp_values[4] = _mm256_extract_epi8(b.values, 4); if (mask & 0x20) tmp_values[5] = _mm256_extract_epi8(b.values, 5); if (mask & 0x40) tmp_values[6] = _mm256_extract_epi8(b.values, 6); if (mask & 0x80) tmp_values[7] = _mm256_extract_epi8(b.values, 7); if (mask & 0x100) tmp_values[8] = _mm256_extract_epi8(b.values, 8); if (mask & 0x200) tmp_values[9] = _mm256_extract_epi8(b.values, 9); if (mask & 0x400) tmp_values[10] = _mm256_extract_epi8(b.values, 10); if (mask & 0x800) tmp_values[11] = _mm256_extract_epi8(b.values, 11); if (mask & 0x1000) tmp_values[12] = _mm256_extract_epi8(b.values, 12); if (mask & 0x2000) tmp_values[13] = _mm256_extract_epi8(b.values, 13); if (mask & 0x4000) tmp_values[14] = _mm256_extract_epi8(b.values, 14); if (mask & 0x8000) tmp_values[15] = _mm256_extract_epi8(b.values, 15); if (mask & 0x010000) tmp_values[16] = _mm256_extract_epi8(b.values, 16); if (mask & 0x020000) tmp_values[17] = _mm256_extract_epi8(b.values, 17); if (mask & 0x040000) tmp_values[18] = _mm256_extract_epi8(b.values, 18); if (mask & 0x080000) tmp_values[19] = _mm256_extract_epi8(b.values, 19); if (mask & 0x100000) tmp_values[20] = _mm256_extract_epi8(b.values, 20); if (mask & 0x200000) tmp_values[21] = _mm256_extract_epi8(b.values, 21); if (mask & 0x400000) tmp_values[22] = _mm256_extract_epi8(b.values, 22); if (mask & 0x800000) tmp_values[23] = _mm256_extract_epi8(b.values, 23); if (mask & 0x1000000) tmp_values[24] = _mm256_extract_epi8(b.values, 24); if (mask & 0x2000000) tmp_values[25] = _mm256_extract_epi8(b.values, 25); if (mask & 0x4000000) tmp_values[26] = _mm256_extract_epi8(b.values, 26); if (mask & 0x8000000) tmp_values[27] = _mm256_extract_epi8(b.values, 27); if (mask & 0x10000000) tmp_values[28] = _mm256_extract_epi8(b.values, 28); if (mask & 0x20000000) tmp_values[29] = _mm256_extract_epi8(b.values, 29); if (mask & 0x40000000) tmp_values[30] = _mm256_extract_epi8(b.values, 30); if (mask & 0x80000000) tmp_values[31] = _mm256_extract_epi8(b.values, 31); return loadu(tmp_values); } static Vectorized blendv(const Vectorized& a, const Vectorized& b, const Vectorized& mask) { return _mm256_blendv_epi8(a.values, b.values, mask.values); } template static Vectorized arange(int8_t base = 0, step_t step = static_cast(1)) { return Vectorized( base, base + step, base + 2 * step, base + 3 * step, base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step, base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step, base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step, base + 16 * step, base + 17 * step, base + 18 * step, base + 19 * step, base + 20 * step, base + 21 * step, base + 22 * step, base + 23 * step, base + 24 * step, base + 25 * step, base + 26 * step, base + 27 * step, base + 28 * step, base + 29 * step, base + 30 * step, base + 31 * step); } static Vectorized set(Vectorized a, Vectorized b, int8_t count = size()) { switch (count) { case 0: return a; case 1: return blend<0x1>(a, b); case 2: return blend<0x3>(a, b); case 3: return blend<0x7>(a, b); case 4: return blend<0xF>(a, b); case 5: return blend<0x1F>(a, b); case 6: return blend<0x3F>(a, b); case 7: return blend<0x7F>(a, b); case 8: return blend<0xFF>(a, b); case 9: return blend<0x1FF>(a, b); case 10: return blend<0x3FF>(a, b); case 11: return blend<0x7FF>(a, b); case 12: return blend<0xFFF>(a, b); case 13: return blend<0x1FFF>(a, b); case 14: return blend<0x3FFF>(a, b); case 15: return blend<0x7FFF>(a, b); case 16: return blend<0xFFFF>(a, b); case 17: return blend<0x1FFFF>(a, b); case 18: return blend<0x3FFFF>(a, b); case 19: return blend<0x7FFFF>(a, b); case 20: return blend<0xFFFFF>(a, b); case 21: return blend<0x1FFFFF>(a, b); case 22: return blend<0x3FFFFF>(a, b); case 23: return blend<0x7FFFFF>(a, b); case 24: return blend<0xFFFFFF>(a, b); case 25: return blend<0x1FFFFFF>(a, b); case 26: return blend<0x3FFFFFF>(a, b); case 27: return blend<0x7FFFFFF>(a, b); case 28: return blend<0xFFFFFFF>(a, b); case 29: return blend<0x1FFFFFFF>(a, b); case 30: return blend<0x3FFFFFFF>(a, b); case 31: return blend<0x7FFFFFFF>(a, b); } return b; } static Vectorized loadu(const void* ptr) { return _mm256_loadu_si256(reinterpret_cast(ptr)); } static Vectorized loadu(const void* ptr, int8_t count) { __at_align__ int8_t tmp_values[size()]; // Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502 // for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two // instructions while a loop would be compiled to one instruction. for (const auto i : c10::irange(size())) { tmp_values[i] = 0; } std::memcpy(tmp_values, ptr, count * sizeof(int8_t)); return loadu(tmp_values); } void store(void* ptr, int count = size()) const { if (count == size()) { // ptr need not to be aligned here. See // https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html _mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values); } else if (count > 0) { __at_align__ int8_t tmp_values[size()]; _mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values); std::memcpy(ptr, tmp_values, count * sizeof(int8_t)); } } const int8_t& operator[](int idx) const = delete; int8_t& operator[](int idx) = delete; Vectorized abs() const { return _mm256_abs_epi8(values); } Vectorized real() const { return *this; } Vectorized imag() const { return _mm256_set1_epi8(0); } Vectorized conj() const { return *this; } Vectorized frac() const; Vectorized neg() const; Vectorized operator==(const Vectorized& other) const { return _mm256_cmpeq_epi8(values, other.values); } Vectorized operator!=(const Vectorized& other) const { return invert(_mm256_cmpeq_epi8(values, other.values)); } Vectorized operator<(const Vectorized& other) const { return _mm256_cmpgt_epi8(other.values, values); } Vectorized operator<=(const Vectorized& other) const { return invert(_mm256_cmpgt_epi8(values, other.values)); } Vectorized operator>(const Vectorized& other) const { return _mm256_cmpgt_epi8(values, other.values); } Vectorized operator>=(const Vectorized& other) const { return invert(_mm256_cmpgt_epi8(other.values, values)); } Vectorized eq(const Vectorized& other) const; Vectorized ne(const Vectorized& other) const; Vectorized gt(const Vectorized& other) const; Vectorized ge(const Vectorized& other) const; Vectorized lt(const Vectorized& other) const; Vectorized le(const Vectorized& other) const; }; template <> Vectorized inline operator+(const Vectorized& a, const Vectorized& b) { return _mm256_add_epi64(a, b); } template <> Vectorized inline operator+(const Vectorized& a, const Vectorized& b) { return _mm256_add_epi32(a, b); } template <> Vectorized inline operator+(const Vectorized& a, const Vectorized& b) { return _mm256_add_epi16(a, b); } template <> Vectorized inline operator+(const Vectorized& a, const Vectorized& b) { return _mm256_add_epi8(a, b); } template <> Vectorized inline operator-(const Vectorized& a, const Vectorized& b) { return _mm256_sub_epi64(a, b); } template <> Vectorized inline operator-(const Vectorized& a, const Vectorized& b) { return _mm256_sub_epi32(a, b); } template <> Vectorized inline operator-(const Vectorized& a, const Vectorized& b) { return _mm256_sub_epi16(a, b); } template <> Vectorized inline operator-(const Vectorized& a, const Vectorized& b) { return _mm256_sub_epi8(a, b); } // Negation. Defined here so we can utilize operator- inline Vectorized Vectorized::neg() const { return Vectorized(0) - *this; } inline Vectorized Vectorized::neg() const { return Vectorized(0) - *this; } inline Vectorized Vectorized::neg() const { return Vectorized(0) - *this; } inline Vectorized Vectorized::neg() const { return Vectorized(0) - *this; } // Emulate operations with no native 64-bit support in avx, // by extracting each element, performing the operation pointwise, // then combining the results into a vector. template Vectorized inline emulate(const Vectorized& a, const Vectorized& b, const op_t& op) { int64_t a0 = _mm256_extract_epi64(a, 0); int64_t a1 = _mm256_extract_epi64(a, 1); int64_t a2 = _mm256_extract_epi64(a, 2); int64_t a3 = _mm256_extract_epi64(a, 3); int64_t b0 = _mm256_extract_epi64(b, 0); int64_t b1 = _mm256_extract_epi64(b, 1); int64_t b2 = _mm256_extract_epi64(b, 2); int64_t b3 = _mm256_extract_epi64(b, 3); int64_t c0 = op(a0, b0); int64_t c1 = op(a1, b1); int64_t c2 = op(a2, b2); int64_t c3 = op(a3, b3); return _mm256_set_epi64x(c3, c2, c1, c0); } template Vectorized inline emulate(const Vectorized& a, const Vectorized& b, const Vectorized& c, const op_t& op) { int64_t a0 = _mm256_extract_epi64(a, 0); int64_t a1 = _mm256_extract_epi64(a, 1); int64_t a2 = _mm256_extract_epi64(a, 2); int64_t a3 = _mm256_extract_epi64(a, 3); int64_t b0 = _mm256_extract_epi64(b, 0); int64_t b1 = _mm256_extract_epi64(b, 1); int64_t b2 = _mm256_extract_epi64(b, 2); int64_t b3 = _mm256_extract_epi64(b, 3); int64_t c0 = _mm256_extract_epi64(c, 0); int64_t c1 = _mm256_extract_epi64(c, 1); int64_t c2 = _mm256_extract_epi64(c, 2); int64_t c3 = _mm256_extract_epi64(c, 3); int64_t d0 = op(a0, b0, c0); int64_t d1 = op(a1, b1, c1); int64_t d2 = op(a2, b2, c2); int64_t d3 = op(a3, b3, c3); return _mm256_set_epi64x(d3, d2, d1, d0); } // AVX2 has no intrinsic for int64_t multiply so it needs to be emulated // This could be implemented more efficiently using epi32 instructions // This is also technically avx compatible, but then we'll need AVX // code for add as well. // Note: intentionally ignores undefined behavior like (-lowest * -1). template <> Vectorized inline operator*(const Vectorized& a, const Vectorized& b) { return emulate(a, b, [](int64_t a_point, int64_t b_point) __ubsan_ignore_undefined__ {return a_point * b_point;}); } template <> Vectorized inline operator*(const Vectorized& a, const Vectorized& b) { return _mm256_mullo_epi32(a, b); } template <> Vectorized inline operator*(const Vectorized& a, const Vectorized& b) { return _mm256_mullo_epi16(a, b); } template Vectorized inline int_elementwise_binary_256(const Vectorized& a, const Vectorized& b, Op op) { T values_a[Vectorized::size()]; T values_b[Vectorized::size()]; a.store(values_a); b.store(values_b); for (int i = 0; i != Vectorized::size(); i++) { values_a[i] = op(values_a[i], values_b[i]); } return Vectorized::loadu(values_a); } template <> Vectorized inline operator*(const Vectorized& a, const Vectorized& b) { // We don't have an instruction for multiplying int8_t return int_elementwise_binary_256(a, b, std::multiplies()); } template <> Vectorized inline minimum(const Vectorized& a, const Vectorized& b) { return emulate(a, b, [](int64_t a_point, int64_t b_point) {return std::min(a_point, b_point);}); } template <> Vectorized inline minimum(const Vectorized& a, const Vectorized& b) { return _mm256_min_epi32(a, b); } template <> Vectorized inline minimum(const Vectorized& a, const Vectorized& b) { return _mm256_min_epi16(a, b); } template <> Vectorized inline minimum(const Vectorized& a, const Vectorized& b) { return _mm256_min_epi8(a, b); } template <> Vectorized inline maximum(const Vectorized& a, const Vectorized& b) { return emulate(a, b, [](int64_t a_point, int64_t b_point) {return std::max(a_point, b_point);}); } template <> Vectorized inline maximum(const Vectorized& a, const Vectorized& b) { return _mm256_max_epi32(a, b); } template <> Vectorized inline maximum(const Vectorized& a, const Vectorized& b) { return _mm256_max_epi16(a, b); } template <> Vectorized inline maximum(const Vectorized& a, const Vectorized& b) { return _mm256_max_epi8(a, b); } template <> Vectorized inline clamp(const Vectorized& a, const Vectorized& min_val, const Vectorized& max_val) { return emulate(a, min_val, max_val, [](int64_t a_point, int64_t min_point, int64_t max_point) {return std::min(max_point, std::max(a_point, min_point));}); } template <> Vectorized inline clamp(const Vectorized& a, const Vectorized& min_val, const Vectorized& max_val) { return _mm256_min_epi32(max_val, _mm256_max_epi32(a, min_val)); } template <> Vectorized inline clamp(const Vectorized& a, const Vectorized& min_val, const Vectorized& max_val) { return _mm256_min_epi16(max_val, _mm256_max_epi16(a, min_val)); } template <> Vectorized inline clamp(const Vectorized& a, const Vectorized& min_val, const Vectorized& max_val) { return _mm256_min_epi8(max_val, _mm256_max_epi8(a, min_val)); } template <> Vectorized inline clamp_max(const Vectorized& a, const Vectorized& max_val) { return emulate(a, max_val, [](int64_t a_point, int64_t max_point) {return std::min(max_point, a_point);}); } template <> Vectorized inline clamp_max(const Vectorized& a, const Vectorized& max_val) { return _mm256_min_epi32(max_val, a); } template <> Vectorized inline clamp_max(const Vectorized& a, const Vectorized& max_val) { return _mm256_min_epi16(max_val, a); } template <> Vectorized inline clamp_max(const Vectorized& a, const Vectorized& max_val) { return _mm256_min_epi8(max_val, a); } template <> Vectorized inline clamp_min(const Vectorized& a, const Vectorized& min_val) { return emulate(a, min_val, [](int64_t a_point, int64_t min_point) {return std::max(min_point, a_point);}); } template <> Vectorized inline clamp_min(const Vectorized& a, const Vectorized& min_val) { return _mm256_max_epi32(min_val, a); } template <> Vectorized inline clamp_min(const Vectorized& a, const Vectorized& min_val) { return _mm256_max_epi16(min_val, a); } template <> Vectorized inline clamp_min(const Vectorized& a, const Vectorized& min_val) { return _mm256_max_epi8(min_val, a); } template Vectorized inline convert_to_int32(const T* ptr) { return Vectorized::loadu(ptr); } template<> Vectorized inline convert_to_int32(const int8_t* ptr) { return _mm256_cvtepi8_epi32(_mm_loadl_epi64(reinterpret_cast(ptr))); } template<> Vectorized inline convert_to_int32(const uint8_t* ptr) { return _mm256_cvtepu8_epi32(_mm_loadl_epi64(reinterpret_cast(ptr))); } template <> Vectorized inline operator/(const Vectorized& a, const Vectorized& b) { return int_elementwise_binary_256(a, b, std::divides()); } template <> Vectorized inline operator/(const Vectorized& a, const Vectorized& b) { return int_elementwise_binary_256(a, b, std::divides()); } template <> Vectorized inline operator/(const Vectorized& a, const Vectorized& b) { return int_elementwise_binary_256(a, b, std::divides()); } template <> Vectorized inline operator/(const Vectorized& a, const Vectorized& b) { return int_elementwise_binary_256(a, b, std::divides()); } template>::value, int> = 0> inline Vectorized operator&(const Vectorized& a, const Vectorized& b) { return _mm256_and_si256(a, b); } template>::value, int> = 0> inline Vectorized operator|(const Vectorized& a, const Vectorized& b) { return _mm256_or_si256(a, b); } template>::value, int> = 0> inline Vectorized operator^(const Vectorized& a, const Vectorized& b) { return _mm256_xor_si256(a, b); } template>::value, int> = 0> inline Vectorized operator~(const Vectorized& a) { return _mm256_xor_si256(a, _mm256_set1_epi32(-1)); } inline Vectorized Vectorized::eq(const Vectorized& other) const { return (*this == other) & Vectorized(1); } inline Vectorized Vectorized::ne(const Vectorized& other) const { return (*this != other) & Vectorized(1); } inline Vectorized Vectorized::gt(const Vectorized& other) const { return (*this > other) & Vectorized(1); } inline Vectorized Vectorized::ge(const Vectorized& other) const { return (*this >= other) & Vectorized(1); } inline Vectorized Vectorized::lt(const Vectorized& other) const { return (*this < other) & Vectorized(1); } inline Vectorized Vectorized::le(const Vectorized& other) const { return (*this <= other) & Vectorized(1); } inline Vectorized Vectorized::eq(const Vectorized& other) const { return (*this == other) & Vectorized(1); } inline Vectorized Vectorized::ne(const Vectorized& other) const { return (*this != other) & Vectorized(1); } inline Vectorized Vectorized::gt(const Vectorized& other) const { return (*this > other) & Vectorized(1); } inline Vectorized Vectorized::ge(const Vectorized& other) const { return (*this >= other) & Vectorized(1); } inline Vectorized Vectorized::lt(const Vectorized& other) const { return (*this < other) & Vectorized(1); } inline Vectorized Vectorized::le(const Vectorized& other) const { return (*this <= other) & Vectorized(1); } inline Vectorized Vectorized::eq(const Vectorized& other) const { return (*this == other) & Vectorized(1); } inline Vectorized Vectorized::ne(const Vectorized& other) const { return (*this != other) & Vectorized(1); } inline Vectorized Vectorized::gt(const Vectorized& other) const { return (*this > other) & Vectorized(1); } inline Vectorized Vectorized::ge(const Vectorized& other) const { return (*this >= other) & Vectorized(1); } inline Vectorized Vectorized::lt(const Vectorized& other) const { return (*this < other) & Vectorized(1); } inline Vectorized Vectorized::le(const Vectorized& other) const { return (*this <= other) & Vectorized(1); } inline Vectorized Vectorized::eq(const Vectorized& other) const { return (*this == other) & Vectorized(1); } inline Vectorized Vectorized::ne(const Vectorized& other) const { return (*this != other) & Vectorized(1); } inline Vectorized Vectorized::gt(const Vectorized& other) const { return (*this > other) & Vectorized(1); } inline Vectorized Vectorized::ge(const Vectorized& other) const { return (*this >= other) & Vectorized(1); } inline Vectorized Vectorized::lt(const Vectorized& other) const { return (*this < other) & Vectorized(1); } inline Vectorized Vectorized::le(const Vectorized& other) const { return (*this <= other) & Vectorized(1); } #endif }}}