#pragma once // @generated by torchgen/gen.py from NativeFunction.h #include #include #include #include #include #include #include #include #include #include namespace at { namespace native { TORCH_API void _cudnn_rnn_backward_out_symint(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional & cx, const at::Tensor & output, const c10::optional & grad_output, const c10::optional & grad_hy, const c10::optional & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional & dropout_state, const at::Tensor & reserve, ::std::array output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3); TORCH_API ::std::tuple> _cudnn_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional & cx, const at::Tensor & output, const c10::optional & grad_output, const c10::optional & grad_hy, const c10::optional & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional & dropout_state, const at::Tensor & reserve, ::std::array output_mask); } // namespace native } // namespace at