#pragma once // @generated by torchgen/gen.py from Function.h #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { // aten::_fake_quantize_learnable_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor inline at::Tensor _fake_quantize_learnable_per_channel_affine(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor=1.0) { return at::_ops::_fake_quantize_learnable_per_channel_affine::call(self, scale, zero_point, axis, quant_min, quant_max, grad_factor); } // aten::_fake_quantize_learnable_per_channel_affine.out(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0, *, Tensor(a!) out) -> Tensor(a!) inline at::Tensor & _fake_quantize_learnable_per_channel_affine_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor=1.0) { return at::_ops::_fake_quantize_learnable_per_channel_affine_out::call(self, scale, zero_point, axis, quant_min, quant_max, grad_factor, out); } // aten::_fake_quantize_learnable_per_channel_affine.out(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0, *, Tensor(a!) out) -> Tensor(a!) inline at::Tensor & _fake_quantize_learnable_per_channel_affine_outf(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor, at::Tensor & out) { return at::_ops::_fake_quantize_learnable_per_channel_affine_out::call(self, scale, zero_point, axis, quant_min, quant_max, grad_factor, out); } }