#pragma once // @generated by torchgen/gen.py from Operator.h #include #include // Forward declarations of any types needed in the operator signatures. // We can't directly include these classes because it will cause circular include dependencies. // This file is included by TensorBody.h, which defines the Tensor class. #include namespace at { namespace _ops { struct TORCH_API _native_multi_head_attention { using schema = ::std::tuple (const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, int64_t, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const c10::optional &, bool, bool, c10::optional); using ptr_schema = schema*; // See Note [static constexpr char* members for windows NVCC] STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_native_multi_head_attention") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_native_multi_head_attention(Tensor query, Tensor key, Tensor value, int embed_dim, int num_head, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, Tensor? mask=None, bool need_weights=True, bool average_attn_weights=True, int? mask_type=None) -> (Tensor, Tensor)") static ::std::tuple call(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, int64_t embed_dim, int64_t num_head, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, const c10::optional & mask, bool need_weights, bool average_attn_weights, c10::optional mask_type); static ::std::tuple redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, int64_t embed_dim, int64_t num_head, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, const c10::optional & mask, bool need_weights, bool average_attn_weights, c10::optional mask_type); }; struct TORCH_API _native_multi_head_attention_out { using schema = ::std::tuple (const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, int64_t, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const c10::optional &, bool, bool, c10::optional, at::Tensor &, at::Tensor &); using ptr_schema = schema*; // See Note [static constexpr char* members for windows NVCC] STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_native_multi_head_attention") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_native_multi_head_attention.out(Tensor query, Tensor key, Tensor value, int embed_dim, int num_head, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, Tensor? mask=None, bool need_weights=True, bool average_attn_weights=True, int? mask_type=None, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))") static ::std::tuple call(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, int64_t embed_dim, int64_t num_head, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, const c10::optional & mask, bool need_weights, bool average_attn_weights, c10::optional mask_type, at::Tensor & out0, at::Tensor & out1); static ::std::tuple redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, int64_t embed_dim, int64_t num_head, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, const c10::optional & mask, bool need_weights, bool average_attn_weights, c10::optional mask_type, at::Tensor & out0, at::Tensor & out1); }; }} // namespace at::_ops