#pragma once // @generated by torchgen/gen.py from Function.h #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { // aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) inline ::std::tuple _slow_conv2d_backward_out(at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding) { return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, kernel_size, stride, padding, grad_input, grad_weight, grad_bias); } // aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) inline ::std::tuple _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias) { return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, kernel_size, stride, padding, grad_input, grad_weight, grad_bias); } // aten::_slow_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) inline ::std::tuple _slow_conv2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array output_mask) { return at::_ops::_slow_conv2d_backward_output_mask::call(grad_output, self, weight, kernel_size, stride, padding, output_mask); } // aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!)) inline ::std::tuple _slow_conv2d_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array output_mask) { return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, kernel_size, stride, padding, output_mask, out0, out1, out2); } // aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!)) inline ::std::tuple _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) { return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, kernel_size, stride, padding, output_mask, out0, out1, out2); } }