#pragma once // @generated by torchgen/gen.py from Operator.h #include #include // Forward declarations of any types needed in the operator signatures. // We can't directly include these classes because it will cause circular include dependencies. // This file is included by TensorBody.h, which defines the Tensor class. #include namespace at { namespace _ops { struct TORCH_API _transformer_decoder_only_layer_fwd { using schema = ::std::tuple (const at::Tensor &, int64_t, int64_t, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, bool, bool, double, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const c10::optional &, const c10::optional &, const c10::optional &); using ptr_schema = schema*; // See Note [static constexpr char* members for windows NVCC] STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_transformer_decoder_only_layer_fwd") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_transformer_decoder_only_layer_fwd(Tensor src, int embed_dim, int num_heads, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, bool use_gelu, bool norm_first, float eps, Tensor norm_weight_1, Tensor norm_bias_1, Tensor norm_weight_2, Tensor norm_bias_2, Tensor ffn_weight_1, Tensor ffn_bias_1, Tensor ffn_weight_2, Tensor ffn_bias_2, Tensor? mask=None, Tensor? incr_key=None, Tensor? incr_value=None) -> (Tensor, Tensor, Tensor)") static ::std::tuple call(const at::Tensor & src, int64_t embed_dim, int64_t num_heads, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, bool use_gelu, bool norm_first, double eps, const at::Tensor & norm_weight_1, const at::Tensor & norm_bias_1, const at::Tensor & norm_weight_2, const at::Tensor & norm_bias_2, const at::Tensor & ffn_weight_1, const at::Tensor & ffn_bias_1, const at::Tensor & ffn_weight_2, const at::Tensor & ffn_bias_2, const c10::optional & mask, const c10::optional & incr_key, const c10::optional & incr_value); static ::std::tuple redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & src, int64_t embed_dim, int64_t num_heads, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, bool use_gelu, bool norm_first, double eps, const at::Tensor & norm_weight_1, const at::Tensor & norm_bias_1, const at::Tensor & norm_weight_2, const at::Tensor & norm_bias_2, const at::Tensor & ffn_weight_1, const at::Tensor & ffn_bias_1, const at::Tensor & ffn_weight_2, const at::Tensor & ffn_bias_2, const c10::optional & mask, const c10::optional & incr_key, const c10::optional & incr_value); }; struct TORCH_API _transformer_decoder_only_layer_fwd_out { using schema = ::std::tuple (const at::Tensor &, int64_t, int64_t, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, bool, bool, double, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const c10::optional &, const c10::optional &, const c10::optional &, at::Tensor &, at::Tensor &, at::Tensor &); using ptr_schema = schema*; // See Note [static constexpr char* members for windows NVCC] STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_transformer_decoder_only_layer_fwd") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_transformer_decoder_only_layer_fwd.out(Tensor src, int embed_dim, int num_heads, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, bool use_gelu, bool norm_first, float eps, Tensor norm_weight_1, Tensor norm_bias_1, Tensor norm_weight_2, Tensor norm_bias_2, Tensor ffn_weight_1, Tensor ffn_bias_1, Tensor ffn_weight_2, Tensor ffn_bias_2, Tensor? mask=None, Tensor? incr_key=None, Tensor? incr_value=None, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))") static ::std::tuple call(const at::Tensor & src, int64_t embed_dim, int64_t num_heads, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, bool use_gelu, bool norm_first, double eps, const at::Tensor & norm_weight_1, const at::Tensor & norm_bias_1, const at::Tensor & norm_weight_2, const at::Tensor & norm_bias_2, const at::Tensor & ffn_weight_1, const at::Tensor & ffn_bias_1, const at::Tensor & ffn_weight_2, const at::Tensor & ffn_bias_2, const c10::optional & mask, const c10::optional & incr_key, const c10::optional & incr_value, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2); static ::std::tuple redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & src, int64_t embed_dim, int64_t num_heads, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, bool use_gelu, bool norm_first, double eps, const at::Tensor & norm_weight_1, const at::Tensor & norm_bias_1, const at::Tensor & norm_weight_2, const at::Tensor & norm_bias_2, const at::Tensor & ffn_weight_1, const at::Tensor & ffn_bias_1, const at::Tensor & ffn_weight_2, const at::Tensor & ffn_bias_2, const c10::optional & mask, const c10::optional & incr_key, const c10::optional & incr_value, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2); }; }} // namespace at::_ops