#pragma once // @generated by torchgen/gen.py from Function.h #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { // aten::fake_quantize_per_channel_affine_cachemask(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor output, Tensor mask) inline ::std::tuple fake_quantize_per_channel_affine_cachemask(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max) { return at::_ops::fake_quantize_per_channel_affine_cachemask::call(self, scale, zero_point, axis, quant_min, quant_max); } // aten::fake_quantize_per_channel_affine_cachemask.out(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!)) inline ::std::tuple fake_quantize_per_channel_affine_cachemask_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max) { return at::_ops::fake_quantize_per_channel_affine_cachemask_out::call(self, scale, zero_point, axis, quant_min, quant_max, out0, out1); } // aten::fake_quantize_per_channel_affine_cachemask.out(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!)) inline ::std::tuple fake_quantize_per_channel_affine_cachemask_outf(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, at::Tensor & out0, at::Tensor & out1) { return at::_ops::fake_quantize_per_channel_affine_cachemask_out::call(self, scale, zero_point, axis, quant_min, quant_max, out0, out1); } }