#pragma once // @generated by torchgen/gen.py from Operator.h #include #include // Forward declarations of any types needed in the operator signatures. // We can't directly include these classes because it will cause circular include dependencies. // This file is included by TensorBody.h, which defines the Tensor class. #include namespace at { namespace _ops { struct TORCH_API miopen_rnn_backward { using schema = ::std::tuple> (const at::Tensor &, at::TensorList, int64_t, const at::Tensor &, const at::Tensor &, const c10::optional &, const at::Tensor &, const c10::optional &, const c10::optional &, const c10::optional &, int64_t, int64_t, int64_t, bool, double, bool, bool, at::IntArrayRef, const c10::optional &, const at::Tensor &, ::std::array); using ptr_schema = schema*; // See Note [static constexpr char* members for windows NVCC] STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::miopen_rnn_backward") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "miopen_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[])") static ::std::tuple> call(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional & cx, const at::Tensor & output, const c10::optional & grad_output, const c10::optional & grad_hy, const c10::optional & grad_cy, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional & dropout_state, const at::Tensor & reserve, ::std::array output_mask); static ::std::tuple> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional & cx, const at::Tensor & output, const c10::optional & grad_output, const c10::optional & grad_hy, const c10::optional & grad_cy, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional & dropout_state, const at::Tensor & reserve, ::std::array output_mask); }; struct TORCH_API miopen_rnn_backward_out { using schema = void (const at::Tensor &, at::TensorList, int64_t, const at::Tensor &, const at::Tensor &, const c10::optional &, const at::Tensor &, const c10::optional &, const c10::optional &, const c10::optional &, int64_t, int64_t, int64_t, bool, double, bool, bool, at::IntArrayRef, const c10::optional &, const at::Tensor &, ::std::array, at::Tensor &, at::Tensor &, at::Tensor &, at::TensorList); using ptr_schema = schema*; // See Note [static constexpr char* members for windows NVCC] STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::miopen_rnn_backward") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "miopen_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()") static void call(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional & cx, const at::Tensor & output, const c10::optional & grad_output, const c10::optional & grad_hy, const c10::optional & grad_cy, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional & dropout_state, const at::Tensor & reserve, ::std::array output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3); static void redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional & cx, const at::Tensor & output, const c10::optional & grad_output, const c10::optional & grad_hy, const c10::optional & grad_cy, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional & dropout_state, const at::Tensor & reserve, ::std::array output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3); }; }} // namespace at::_ops