#pragma once // @generated by torchgen/gen.py from Function.h #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { // aten::multi_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!) inline at::Tensor & multi_margin_loss_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const at::Scalar & p, const at::Scalar & margin, const c10::optional & weight={}, int64_t reduction=at::Reduction::Mean) { return at::_ops::multi_margin_loss_backward_grad_input::call(grad_output, self, target, p, margin, weight, reduction, grad_input); } // aten::multi_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!) inline at::Tensor & multi_margin_loss_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const at::Scalar & p, const at::Scalar & margin, const c10::optional & weight, int64_t reduction, at::Tensor & grad_input) { return at::_ops::multi_margin_loss_backward_grad_input::call(grad_output, self, target, p, margin, weight, reduction, grad_input); } // aten::multi_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean) -> Tensor inline at::Tensor multi_margin_loss_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const at::Scalar & p, const at::Scalar & margin, const c10::optional & weight={}, int64_t reduction=at::Reduction::Mean) { return at::_ops::multi_margin_loss_backward::call(grad_output, self, target, p, margin, weight, reduction); } }