#pragma once // @generated by torchgen/gen.py from NativeFunction.h #include #include #include #include #include #include #include #include #include #include namespace at { namespace native { TORCH_API ::std::tuple native_batch_norm_backward_out(const at::Tensor & grad_out, const at::Tensor & input, const c10::optional & weight, const c10::optional & running_mean, const c10::optional & running_var, const c10::optional & save_mean, const c10::optional & save_invstd, bool train, double eps, ::std::array output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2); TORCH_API ::std::tuple batch_norm_backward_cpu(const at::Tensor & grad_out, const at::Tensor & input, const c10::optional & weight, const c10::optional & running_mean, const c10::optional & running_var, const c10::optional & save_mean, const c10::optional & save_invstd, bool train, double eps, ::std::array output_mask); TORCH_API ::std::tuple batch_norm_backward_cuda(const at::Tensor & grad_out, const at::Tensor & input, const c10::optional & weight, const c10::optional & running_mean, const c10::optional & running_var, const c10::optional & save_mean, const c10::optional & save_invstd, bool train, double eps, ::std::array output_mask); TORCH_API ::std::tuple mkldnn_batch_norm_backward(const at::Tensor & grad_out, const at::Tensor & input, const c10::optional & weight, const c10::optional & running_mean, const c10::optional & running_var, const c10::optional & save_mean, const c10::optional & save_invstd, bool train, double eps, ::std::array output_mask); } // namespace native } // namespace at