#pragma once // @generated by torchgen/gen.py from Function.h #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { // aten::native_layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor) inline ::std::tuple native_layer_norm(const at::Tensor & input, at::IntArrayRef normalized_shape, const c10::optional & weight, const c10::optional & bias, double eps) { return at::_ops::native_layer_norm::call(input, c10::fromIntArrayRef(normalized_shape), weight, bias, eps); } // aten::native_layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor) inline ::std::tuple native_layer_norm_symint(const at::Tensor & input, c10::SymIntArrayRef normalized_shape, const c10::optional & weight, const c10::optional & bias, double eps) { return at::_ops::native_layer_norm::call(input, normalized_shape, weight, bias, eps); } // aten::native_layer_norm.out(Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!)) inline ::std::tuple native_layer_norm_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & input, at::IntArrayRef normalized_shape, const c10::optional & weight, const c10::optional & bias, double eps) { return at::_ops::native_layer_norm_out::call(input, c10::fromIntArrayRef(normalized_shape), weight, bias, eps, out0, out1, out2); } // aten::native_layer_norm.out(Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!)) inline ::std::tuple native_layer_norm_outf(const at::Tensor & input, at::IntArrayRef normalized_shape, const c10::optional & weight, const c10::optional & bias, double eps, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) { return at::_ops::native_layer_norm_out::call(input, c10::fromIntArrayRef(normalized_shape), weight, bias, eps, out0, out1, out2); } // aten::native_layer_norm.out(Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!)) inline ::std::tuple native_layer_norm_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & input, c10::SymIntArrayRef normalized_shape, const c10::optional & weight, const c10::optional & bias, double eps) { return at::_ops::native_layer_norm_out::call(input, normalized_shape, weight, bias, eps, out0, out1, out2); } // aten::native_layer_norm.out(Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!)) inline ::std::tuple native_layer_norm_symint_outf(const at::Tensor & input, c10::SymIntArrayRef normalized_shape, const c10::optional & weight, const c10::optional & bias, double eps, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) { return at::_ops::native_layer_norm_out::call(input, normalized_shape, weight, bias, eps, out0, out1, out2); } }