U
    &ºcÐ!  ã                   @   sh   d Z ddlZddlmZ e e¡Zddddd	d
dddddddddddddddddœZG dd„ deƒZdS )z BERT model configuration é    Né   )ÚPretrainedConfigzQhttps://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.jsonzRhttps://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.jsonzOhttps://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.jsonzPhttps://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.jsonz^https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.jsonz\https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.jsonzQhttps://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.jsonzVhttps://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.jsonzehttps://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.jsonzchttps://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.jsonzuhttps://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.jsonzshttps://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.jsonz^https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.jsonz\https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-config.jsonz^https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-config.jsonz\https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese/config.jsonzohttps://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-whole-word-masking/config.jsonzahttps://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char/config.jsonzthttps://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-whole-word-masking/config.jsonzchttps://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/config.jsonzehttps://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/config.jsonz^https://s3.amazonaws.com/models.huggingface.co/bert/wietsedv/bert-base-dutch-cased/config.json)zbert-base-uncasedzbert-large-uncasedzbert-base-casedzbert-large-casedzbert-base-multilingual-uncasedzbert-base-multilingual-casedzbert-base-chinesezbert-base-german-casedz%bert-large-uncased-whole-word-maskingz#bert-large-cased-whole-word-maskingz5bert-large-uncased-whole-word-masking-finetuned-squadz3bert-large-cased-whole-word-masking-finetuned-squadzbert-base-cased-finetuned-mrpczbert-base-german-dbmdz-casedzbert-base-german-dbmdz-uncasedzbert-base-japanesez%bert-base-japanese-whole-word-maskingzbert-base-japanese-charz*bert-base-japanese-char-whole-word-maskingzbert-base-finnish-cased-v1zbert-base-finnish-uncased-v1zbert-base-dutch-casedc                       s*   e Zd ZdZeZdZd‡ fdd„	Z‡  ZS )Ú
BertConfiga¼  
        This is the configuration class to store the configuration of a :class:`~transformers.BertModel`.
        It is used to instantiate an BERT model according to the specified arguments, defining the model
        architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
        the BERT `bert-base-uncased <https://huggingface.co/bert-base-uncased>`__ architecture.

        Configuration objects inherit from  :class:`~transformers.PretrainedConfig` and can be used
        to control the model outputs. Read the documentation from  :class:`~transformers.PretrainedConfig`
        for more information.


        Args:
            vocab_size (:obj:`int`, optional, defaults to 30522):
                Vocabulary size of the BERT model. Defines the different tokens that
                can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.BertModel`.
            hidden_size (:obj:`int`, optional, defaults to 768):
                Dimensionality of the encoder layers and the pooler layer.
            num_hidden_layers (:obj:`int`, optional, defaults to 12):
                Number of hidden layers in the Transformer encoder.
            num_attention_heads (:obj:`int`, optional, defaults to 12):
                Number of attention heads for each attention layer in the Transformer encoder.
            intermediate_size (:obj:`int`, optional, defaults to 3072):
                Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
            hidden_act (:obj:`str` or :obj:`function`, optional, defaults to "gelu"):
                The non-linear activation function (function or string) in the encoder and pooler.
                If string, "gelu", "relu", "swish" and "gelu_new" are supported.
            hidden_dropout_prob (:obj:`float`, optional, defaults to 0.1):
                The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob (:obj:`float`, optional, defaults to 0.1):
                The dropout ratio for the attention probabilities.
            max_position_embeddings (:obj:`int`, optional, defaults to 512):
                The maximum sequence length that this model might ever be used with.
                Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
            type_vocab_size (:obj:`int`, optional, defaults to 2):
                The vocabulary size of the `token_type_ids` passed into :class:`~transformers.BertModel`.
            initializer_range (:obj:`float`, optional, defaults to 0.02):
                The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
            layer_norm_eps (:obj:`float`, optional, defaults to 1e-12):
                The epsilon used by the layer normalization layers.

        Example::

            from transformers import BertModel, BertConfig

            # Initializing a BERT bert-base-uncased style configuration
            configuration = BertConfig()

            # Initializing a model from the bert-base-uncased style configuration
            model = BertModel(configuration)

            # Accessing the model configuration
            configuration = model.config

        Attributes:
            pretrained_config_archive_map (Dict[str, str]):
                A dictionary containing all the available pre-trained checkpoints.
    Zberté:w  é   é   é   Úgeluçš™™™™™¹?é   é   ç{®Gáz”?çê-™—q=r   c                    sb   t ƒ jf d|i|—Ž || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _d S )NÚpad_token_id)ÚsuperÚ__init__Ú
vocab_sizeÚhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚ
hidden_actÚintermediate_sizeÚhidden_dropout_probÚattention_probs_dropout_probÚmax_position_embeddingsÚtype_vocab_sizeÚinitializer_rangeÚlayer_norm_eps)Úselfr   r   r   r   r   r   r   r   r   r   r   r   r   Úkwargs©Ú	__class__© úC/tmp/pip-unpacked-wheel-ymerj3tt/transformers/configuration_bert.pyr   q   s    zBertConfig.__init__)r   r   r   r   r   r	   r
   r
   r   r   r   r   r   )	Ú__name__Ú
__module__Ú__qualname__Ú__doc__Ú"BERT_PRETRAINED_CONFIG_ARCHIVE_MAPZpretrained_config_archive_mapZ
model_typer   Ú__classcell__r"   r"   r    r#   r   4   s"   9             òr   )	r'   ÚloggingZconfiguration_utilsr   Ú	getLoggerr$   Úloggerr(   r   r"   r"   r"   r#   Ú<module>   s6   
ê