U
    &ºcn  ã                   @   sJ   d Z ddlZddlmZ e e¡Zddddd	d
ddœZG dd„ deƒZdS )z  DistilBERT model configuration é    Né   )ÚPretrainedConfigzWhttps://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-config.jsonzghttps://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-config.jsonzUhttps://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-cased-config.jsonzehttps://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-cased-distilled-squad-config.jsonz\https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-german-cased-config.jsonzbhttps://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-multilingual-cased-config.jsonzohttps://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-finetuned-sst-2-english-config.json)zdistilbert-base-uncasedz'distilbert-base-uncased-distilled-squadzdistilbert-base-casedz%distilbert-base-cased-distilled-squadzdistilbert-base-german-casedz"distilbert-base-multilingual-casedz/distilbert-base-uncased-finetuned-sst-2-englishc                       sN   e Zd ZdZeZdZd‡ fdd„	Zedd„ ƒZ	edd„ ƒZ
edd„ ƒZ‡  ZS )ÚDistilBertConfiga«  
        This is the configuration class to store the configuration of a :class:`~transformers.DistilBertModel`.
        It is used to instantiate a DistilBERT model according to the specified arguments, defining the model
        architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
        the DistilBERT `distilbert-base-uncased <https://huggingface.co/distilbert-base-uncased>`__ architecture.

        Configuration objects inherit from  :class:`~transformers.PretrainedConfig` and can be used
        to control the model outputs. Read the documentation from  :class:`~transformers.PretrainedConfig`
        for more information.


        Args:
            vocab_size (:obj:`int`, optional, defaults to 30522):
                Vocabulary size of the DistilBERT model. Defines the different tokens that
                can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.BertModel`.
            max_position_embeddings (:obj:`int`, optional, defaults to 512):
                The maximum sequence length that this model might ever be used with.
                Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
            sinusoidal_pos_embds (:obj:`boolean`, optional, defaults to :obj:`False`):
                Whether to use sinusoidal positional embeddings.
            n_layers (:obj:`int`, optional, defaults to 6):
                Number of hidden layers in the Transformer encoder.
            n_heads (:obj:`int`, optional, defaults to 12):
                Number of attention heads for each attention layer in the Transformer encoder.
            dim (:obj:`int`, optional, defaults to 768):
                Dimensionality of the encoder layers and the pooler layer.
            hidden_dim (:obj:`int`, optional, defaults to 3072):
                The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
            dropout (:obj:`float`, optional, defaults to 0.1):
                The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
            attention_dropout (:obj:`float`, optional, defaults to 0.1):
                The dropout ratio for the attention probabilities.
            activation (:obj:`str` or :obj:`function`, optional, defaults to "gelu"):
                The non-linear activation function (function or string) in the encoder and pooler.
                If string, "gelu", "relu", "swish" and "gelu_new" are supported.
            initializer_range (:obj:`float`, optional, defaults to 0.02):
                The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
            qa_dropout (:obj:`float`, optional, defaults to 0.1):
                The dropout probabilities used in the question answering model
                :class:`~tranformers.DistilBertForQuestionAnswering`.
            seq_classif_dropout (:obj:`float`, optional, defaults to 0.2):
                The dropout probabilities used in the sequence classification model
                :class:`~tranformers.DistilBertForSequenceClassification`.

        Example::

            from transformers import DistilBertModel, DistilBertConfig

            # Initializing a DistilBERT configuration
            configuration = DistilBertConfig()

            # Initializing a model from the configuration
            model = DistilBertModel(configuration)

            # Accessing the model configuration
            configuration = model.config

        Attributes:
            pretrained_config_archive_map (Dict[str, str]):
                A dictionary containing all the available pre-trained checkpoints.
    Z
distilberté:w  é   Fé   é   é   é   çš™™™™™¹?Úgeluç{®Gáz”?çš™™™™™É?r   c                    sh   t ƒ jf |d|i—Ž || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _d S )NÚpad_token_id)ÚsuperÚ__init__Ú
vocab_sizeÚmax_position_embeddingsÚsinusoidal_pos_embdsÚn_layersÚn_headsÚdimÚ
hidden_dimÚdropoutÚattention_dropoutÚ
activationÚinitializer_rangeÚ
qa_dropoutÚseq_classif_dropout)Úselfr   r   r   r   r   r   r   r   r   r   r   r   r   r   Úkwargs©Ú	__class__© úI/tmp/pip-unpacked-wheel-ymerj3tt/transformers/configuration_distilbert.pyr   e   s    zDistilBertConfig.__init__c                 C   s   | j S ©N)r   ©r   r#   r#   r$   Úhidden_size†   s    zDistilBertConfig.hidden_sizec                 C   s   | j S r%   )r   r&   r#   r#   r$   Únum_attention_headsŠ   s    z$DistilBertConfig.num_attention_headsc                 C   s   | j S r%   )r   r&   r#   r#   r$   Únum_hidden_layersŽ   s    z"DistilBertConfig.num_hidden_layers)r   r   Fr   r   r	   r
   r   r   r   r   r   r   r   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__Ú(DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAPZpretrained_config_archive_mapZ
model_typer   Úpropertyr'   r(   r)   Ú__classcell__r#   r#   r!   r$   r   $   s0   =              ñ!

r   )	r-   ÚloggingZconfiguration_utilsr   Ú	getLoggerr*   Úloggerr.   r   r#   r#   r#   r$   Ú<module>   s   
ù