U
    &ºcÅ&  ã                   @   sD   d Z ddlZddlmZ e e¡Zddddd	œZG d
d„ deƒZdS )z' Flaubert configuration, based on XLM. é    Né   )Ú	XLMConfigz]https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_small_cased/config.jsonz^https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_base_uncased/config.jsonz\https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_base_cased/config.jsonz]https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_large_cased/config.json)zflaubert-small-casedzflaubert-base-uncasedzflaubert-base-casedzflaubert-large-casedc                       s*   e Zd ZdZeZdZd	‡ fdd„	Z‡  ZS )
ÚFlaubertConfigaÏ  
        Configuration class to store the configuration of a `FlaubertModel`.
        This is the configuration class to store the configuration of a :class:`~transformers.XLMModel`.
        It is used to instantiate an XLM model according to the specified arguments, defining the model
        architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
        the `xlm-mlm-en-2048 <https://huggingface.co/xlm-mlm-en-2048>`__ architecture.

        Configuration objects inherit from  :class:`~transformers.PretrainedConfig` and can be used
        to control the model outputs. Read the documentation from  :class:`~transformers.PretrainedConfig`
        for more information.

        Args:
            pre_norm (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether to apply the layer normalization before or after the feed forward layer following the
                attention in each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)
            layerdrop (:obj:`float`, `optional`, defaults to 0.0):
                Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand
                with Structured Dropout. ICLR 2020)
            vocab_size (:obj:`int`, optional, defaults to 30145):
                Vocabulary size of the Flaubert model. Defines the different tokens that
                can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.FlaubertModel`.
            emb_dim (:obj:`int`, optional, defaults to 2048):
                Dimensionality of the encoder layers and the pooler layer.
            n_layer (:obj:`int`, optional, defaults to 12):
                Number of hidden layers in the Transformer encoder.
            n_head (:obj:`int`, optional, defaults to 16):
                Number of attention heads for each attention layer in the Transformer encoder.
            dropout (:obj:`float`, optional, defaults to 0.1):
                The dropout probability for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_dropout (:obj:`float`, optional, defaults to 0.1):
                The dropout probability for the attention mechanism
            gelu_activation (:obj:`boolean`, optional, defaults to :obj:`True`):
                The non-linear activation function (function or string) in the
                encoder and pooler. If set to `True`, "gelu" will be used instead of "relu".
            sinusoidal_embeddings (:obj:`boolean`, optional, defaults to :obj:`False`):
                Whether to use sinusoidal positional embeddings instead of absolute positional embeddings.
            causal (:obj:`boolean`, optional, defaults to :obj:`False`):
                Set this to `True` for the model to behave in a causal manner.
                Causal models use a triangular attention mask in order to only attend to the left-side context instead
                if a bidirectional context.
            asm (:obj:`boolean`, optional, defaults to :obj:`False`):
                Whether to use an adaptive log softmax projection layer instead of a linear layer for the prediction
                layer.
            n_langs (:obj:`int`, optional, defaults to 1):
                The number of languages the model handles. Set to 1 for monolingual models.
            use_lang_emb (:obj:`boolean`, optional, defaults to :obj:`True`)
                Whether to use language embeddings. Some models use additional language embeddings, see
                `the multilingual models page <http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings>`__
                for information on how to use them.
            max_position_embeddings (:obj:`int`, optional, defaults to 512):
                The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            embed_init_std (:obj:`float`, optional, defaults to 2048^-0.5):
                The standard deviation of the truncated_normal_initializer for
                initializing the embedding matrices.
            init_std (:obj:`int`, optional, defaults to 50257):
                The standard deviation of the truncated_normal_initializer for
                initializing all weight matrices except the embedding matrices.
            layer_norm_eps (:obj:`float`, optional, defaults to 1e-12):
                The epsilon used by the layer normalization layers.
            bos_index (:obj:`int`, optional, defaults to 0):
                The index of the beginning of sentence token in the vocabulary.
            eos_index (:obj:`int`, optional, defaults to 1):
                The index of the end of sentence token in the vocabulary.
            pad_index (:obj:`int`, optional, defaults to 2):
                The index of the padding token in the vocabulary.
            unk_index (:obj:`int`, optional, defaults to 3):
                The index of the unknown token in the vocabulary.
            mask_index (:obj:`int`, optional, defaults to 5):
                The index of the masking token in the vocabulary.
            is_encoder(:obj:`boolean`, optional, defaults to :obj:`True`):
                Whether the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
            summary_type (:obj:`string`, optional, defaults to "first"):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.XLMForSequenceClassification`.
                Is one of the following options:

                - 'last' => take the last token hidden state (like XLNet)
                - 'first' => take the first token hidden state (like Bert)
                - 'mean' => take the mean of all tokens hidden states
                - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
                - 'attn' => Not implemented now, use multi-head attention
            summary_use_proj (:obj:`boolean`, optional, defaults to :obj:`True`):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.XLMForSequenceClassification`.
                Add a projection after the vector extraction
            summary_activation (:obj:`string` or :obj:`None`, optional, defaults to :obj:`None`):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.XLMForSequenceClassification`.
                'tanh' => add a tanh activation to the output, Other => no activation.
            summary_proj_to_labels (:obj:`boolean`, optional, defaults to :obj:`True`):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.XLMForSequenceClassification`.
                If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
            summary_first_dropout (:obj:`float`, optional, defaults to 0.1):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.XLMForSequenceClassification`.
                Add a dropout before the projection and activation
            start_n_top (:obj:`int`, optional, defaults to 5):
                Used in the SQuAD evaluation script for XLM and XLNet.
            end_n_top (:obj:`int`, optional, defaults to 5):
                Used in the SQuAD evaluation script for XLM and XLNet.
            mask_token_id (:obj:`int`, optional, defaults to 0):
                Model agnostic parameter to identify masked tokens when generating text in an MLM context.
            lang_id (:obj:`int`, optional, defaults to 1):
                The ID of the language used by the model. This parameter is used when generating
                text in a given language.
    Zflaubertç        Fé   r   c                    s(   t ƒ jf ||dœ|—Ž || _|| _dS )z#Constructs FlaubertConfig.
        )Úpad_token_idÚbos_token_idN)ÚsuperÚ__init__Ú	layerdropÚpre_norm)Úselfr   r   r   r   Úkwargs©Ú	__class__© úG/tmp/pip-unpacked-wheel-ymerj3tt/transformers/configuration_flaubert.pyr
   ”   s    zFlaubertConfig.__init__)r   Fr   r   )	Ú__name__Ú
__module__Ú__qualname__Ú__doc__Ú&FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAPZpretrained_config_archive_mapZ
model_typer
   Ú__classcell__r   r   r   r   r   !   s   or   )	r   ÚloggingZconfiguration_xlmr   Ú	getLoggerr   Úloggerr   r   r   r   r   r   Ú<module>   s   
ü