# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OpenAI GPT checkpoint.""" import argparse import json import logging import numpy import torch from transformers import CONFIG_NAME, WEIGHTS_NAME from transformers.tokenization_xlm import VOCAB_FILES_NAMES logging.basicConfig(level=logging.INFO) def convert_xlm_checkpoint_to_pytorch(xlm_checkpoint_path, pytorch_dump_folder_path): # Load checkpoint chkpt = torch.load(xlm_checkpoint_path, map_location="cpu") state_dict = chkpt["model"] # We have the base model one level deeper than the original XLM repository two_levels_state_dict = {} for k, v in state_dict.items(): if "pred_layer" in k: two_levels_state_dict[k] = v else: two_levels_state_dict["transformer." + k] = v config = chkpt["params"] config = dict((n, v) for n, v in config.items() if not isinstance(v, (torch.FloatTensor, numpy.ndarray))) vocab = chkpt["dico_word2id"] vocab = dict((s + "" if s.find("@@") == -1 and i > 13 else s.replace("@@", ""), i) for s, i in vocab.items()) # Save pytorch-model pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print("Save PyTorch model to {}".format(pytorch_weights_dump_path)) torch.save(two_levels_state_dict, pytorch_weights_dump_path) print("Save configuration file to {}".format(pytorch_config_dump_path)) with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(json.dumps(config, indent=2) + "\n") print("Save vocab file to {}".format(pytorch_config_dump_path)) with open(pytorch_vocab_dump_path, "w", encoding="utf-8") as f: f.write(json.dumps(vocab, indent=2) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)