# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch OpenAI GPT-2 model.""" import logging import os import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from .activations import ACT2FN from .configuration_gpt2 import GPT2Config from .file_utils import add_start_docstrings, add_start_docstrings_to_callable from .modeling_utils import Conv1D, PreTrainedModel, SequenceSummary, prune_conv1d_layer logger = logging.getLogger(__name__) GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = { "gpt2": "https://cdn.huggingface.co/gpt2-pytorch_model.bin", "gpt2-medium": "https://cdn.huggingface.co/gpt2-medium-pytorch_model.bin", "gpt2-large": "https://cdn.huggingface.co/gpt2-large-pytorch_model.bin", "gpt2-xl": "https://cdn.huggingface.co/gpt2-xl-pytorch_model.bin", "distilgpt2": "https://cdn.huggingface.co/distilgpt2-pytorch_model.bin", } def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): """ Load tf checkpoints in a pytorch model """ try: import re import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(gpt2_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array.squeeze()) for name, array in zip(names, arrays): name = name[6:] # skip "model/" name = name.split("/") pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+\d+", m_name): scope_names = re.split(r"(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "w" or scope_names[0] == "g": pointer = getattr(pointer, "weight") elif scope_names[0] == "b": pointer = getattr(pointer, "bias") elif scope_names[0] == "wpe" or scope_names[0] == "wte": pointer = getattr(pointer, scope_names[0]) pointer = getattr(pointer, "weight") else: pointer = getattr(pointer, scope_names[0]) if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model class Attention(nn.Module): def __init__(self, nx, n_ctx, config, scale=False): super().__init__() self.output_attentions = config.output_attentions n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert n_state % config.n_head == 0 self.register_buffer( "bias", torch.tril(torch.ones((n_ctx, n_ctx), dtype=torch.uint8)).view(1, 1, n_ctx, n_ctx) ) self.register_buffer("masked_bias", torch.tensor(-1e4)) self.n_head = config.n_head self.split_size = n_state self.scale = scale self.c_attn = Conv1D(n_state * 3, nx) self.c_proj = Conv1D(n_state, nx) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.n_head, self.split_size // self.n_head) heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in self.pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) self.n_head = self.n_head - len(heads) self.pruned_heads = self.pruned_heads.union(heads) def _attn(self, q, k, v, attention_mask=None, head_mask=None): w = torch.matmul(q, k) if self.scale: w = w / (float(v.size(-1)) ** 0.5) nd, ns = w.size(-2), w.size(-1) mask = self.bias[:, :, ns - nd : ns, :ns] w = torch.where(mask.bool(), w, self.masked_bias.to(w.dtype)) if attention_mask is not None: # Apply the attention mask w = w + attention_mask w = nn.Softmax(dim=-1)(w) w = self.attn_dropout(w) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [torch.matmul(w, v)] if self.output_attentions: outputs.append(w) return outputs def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states if k: return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length) else: return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def forward(self, x, layer_past=None, attention_mask=None, head_mask=None, use_cache=False): x = self.c_attn(x) query, key, value = x.split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) if layer_past is not None: past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below key = torch.cat((past_key, key), dim=-1) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking else: present = (None,) attn_outputs = self._attn(query, key, value, attention_mask, head_mask) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a) outputs = [a, present] + attn_outputs[1:] return outputs # a, present, (attentions) class MLP(nn.Module): def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) super().__init__() nx = config.n_embd self.c_fc = Conv1D(n_state, nx) self.c_proj = Conv1D(nx, n_state) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return self.dropout(h2) class Block(nn.Module): def __init__(self, n_ctx, config, scale=False): super().__init__() nx = config.n_embd self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) self.attn = Attention(nx, n_ctx, config, scale) self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) self.mlp = MLP(4 * nx, config) def forward(self, x, layer_past=None, attention_mask=None, head_mask=None, use_cache=False): output_attn = self.attn( self.ln_1(x), layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, ) a = output_attn[0] # output_attn: a, present, (attentions) x = x + a m = self.mlp(self.ln_2(x)) x = x + m outputs = [x] + output_attn[1:] return outputs # x, present, (attentions) class GPT2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPT2Config pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP load_tf_weights = load_tf_weights_in_gpt2 base_model_prefix = "transformer" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) GPT2_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module `_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ GPT2_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. If `past` is used, optionally only the last `input_ids` have to be input (see `past`). Indices can be obtained using :class:`transformers.GPT2Tokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.encode_plus` for details. `What are input IDs? <../glossary.html#input-ids>`__ past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `past` output below). Can be used to speed up sequential decoding. If `past` is used, the user can optionally input only the last `input_ids` (those that don't have their past given to this model) of shape :obj:`(batch_size, 1)` instead of all `input_ids` of shape :obj:`(batch_size, sequence_length)`. attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`, defaults to :obj:`None`): `input_ids_length` = `sequence_length if `past` is None else 1 Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token If `past` is used, optionally only the last `token_type_ids` have to be input (see `past`). `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `past` is used, optionally only the last `input_embeds` have to be input (see `past`). use_cache (:obj:`bool`): If `use_cache` is True, `past` key value states are returned and can be used to speed up decoding (see `past`). Defaults to `True`. """ @add_start_docstrings( "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.", GPT2_START_DOCSTRING, ) class GPT2Model(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.wte = nn.Embedding(config.vocab_size, config.n_embd) self.wpe = nn.Embedding(config.n_positions, config.n_embd) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]) self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.init_weights() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].attn.prune_heads(heads) @add_start_docstrings_to_callable(GPT2_INPUTS_DOCSTRING) def forward( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, use_cache=True, ): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.GPT2Config`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the last layer of the model. If `past` is used only the last hidden-state of the sequences of shape :obj:`(batch_size, 1, hidden_size)` is output. past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import GPT2Tokenizer, GPT2Model import torch tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ # If using past key value states, only the last tokens # should be given as an input if past is not None: if input_ids is not None: input_ids = input_ids[:, -1:] if inputs_embeds is not None: inputs_embeds = inputs_embeds[:, -1:] if token_type_ids is not None: token_type_ids = token_type_ids[:, -1:] if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past is None: past_length = 0 past = [None] * len(self.h) else: past_length = past[0][0].size(-2) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # Attention mask. if attention_mask is not None: assert batch_size > 0, "batch_size has to be defined and > 0" attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () all_attentions = [] all_hidden_states = () for i, (block, layer_past) in enumerate(zip(self.h, past)): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], use_cache=use_cache, ) hidden_states, present = outputs[:2] if use_cache is True: presents = presents + (present,) if self.output_attentions: all_attentions.append(outputs[2]) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(*output_shape) # Add last hidden state if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if use_cache is True: outputs = outputs + (presents,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:] all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions) outputs = outputs + (all_attentions,) return outputs # last hidden state, (presents), (all hidden_states), (attentions) @add_start_docstrings( """The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, ) class GPT2LMHeadModel(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.init_weights() def get_output_embeddings(self): return self.lm_head def prepare_inputs_for_generation(self, input_ids, past, **kwargs): # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) return {"input_ids": input_ids, "past": past, "use_cache": kwargs["use_cache"]} @add_start_docstrings_to_callable(GPT2_INPUTS_DOCSTRING) def forward( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=True, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.GPT2Config`) and inputs: loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when ``labels`` is provided) Language modeling loss. prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=input_ids) loss, logits = outputs[:2] """ transformer_outputs = self.transformer( input_ids, past=past, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) outputs = (lm_logits,) + transformer_outputs[1:] if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions) @add_start_docstrings( """The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, GPT2_START_DOCSTRING, ) class GPT2DoubleHeadsModel(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 1 self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.multiple_choice_head = SequenceSummary(config) self.init_weights() def get_output_embeddings(self): return self.lm_head @add_start_docstrings_to_callable(GPT2_INPUTS_DOCSTRING) def forward( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, lm_labels=None, mc_labels=None, use_cache=True, ): r""" mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input) Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - 1[``. lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`) Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`, defaults to :obj:`None`) Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.GPT2Config`) and inputs: lm_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``lm_labels`` is provided): Language modeling loss. mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`multiple_choice_labels` is provided): Multiple choice classification loss. lm_prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). mc_prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import torch from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2DoubleHeadsModel.from_pretrained('gpt2') # Add a [CLS] to the vocabulary (we should train it also!) tokenizer.add_special_tokens({'cls_token': '[CLS]'}) model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] encoded_choices = [tokenizer.encode(s) for s in choices] cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 outputs = model(input_ids, mc_token_ids=mc_token_ids) lm_prediction_scores, mc_prediction_scores = outputs[:2] """ transformer_outputs = self.transformer( input_ids, past=past, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) outputs = (lm_logits, mc_logits) + transformer_outputs[1:] if mc_labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) outputs = (loss,) + outputs if lm_labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = lm_labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = (loss,) + outputs return outputs # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)