# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 CamemBERT model. """ import logging from .configuration_camembert import CamembertConfig from .file_utils import add_start_docstrings from .modeling_tf_roberta import ( TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaModel, ) logger = logging.getLogger(__name__) TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {} CAMEMBERT_START_DOCSTRING = r""" .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})` Parameters: config (:class:`~transformers.CamembertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ @add_start_docstrings( "The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top.", CAMEMBERT_START_DOCSTRING, ) class TFCamembertModel(TFRobertaModel): """ This class overrides :class:`~transformers.TFRobertaModel`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = CamembertConfig pretrained_model_archive_map = TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP @add_start_docstrings( """CamemBERT Model with a `language modeling` head on top. """, CAMEMBERT_START_DOCSTRING, ) class TFCamembertForMaskedLM(TFRobertaForMaskedLM): """ This class overrides :class:`~transformers.TFRobertaForMaskedLM`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = CamembertConfig pretrained_model_archive_map = TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP @add_start_docstrings( """CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, CAMEMBERT_START_DOCSTRING, ) class TFCamembertForSequenceClassification(TFRobertaForSequenceClassification): """ This class overrides :class:`~transformers.TFRobertaForSequenceClassification`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = CamembertConfig pretrained_model_archive_map = TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP @add_start_docstrings( """CamemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, CAMEMBERT_START_DOCSTRING, ) class TFCamembertForTokenClassification(TFRobertaForTokenClassification): """ This class overrides :class:`~transformers.TFRobertaForTokenClassification`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = CamembertConfig pretrained_model_archive_map = TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP