# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 CTRL model.""" import logging import numpy as np import tensorflow as tf from .configuration_ctrl import CTRLConfig from .file_utils import add_start_docstrings, add_start_docstrings_to_callable from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, keras_serializable, shape_list from .tokenization_utils import BatchEncoding logger = logging.getLogger(__name__) TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP = {"ctrl": "https://cdn.huggingface.co/ctrl-tf_model.h5"} def angle_defn(pos, i, d_model_size): angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model_size)) return pos * angle_rates def positional_encoding(position, d_model_size): # create the sinusoidal pattern for the positional encoding angle_rads = angle_defn(np.arange(position)[:, np.newaxis], np.arange(d_model_size)[np.newaxis, :], d_model_size) sines = np.sin(angle_rads[:, 0::2]) cosines = np.cos(angle_rads[:, 1::2]) # pos_encoding = tf.cast(np.concatenate([sines, cosines], axis=-1)[np.newaxis, ...], dtype=tf.float32) pos_encoding = tf.cast(np.concatenate([sines, cosines], axis=-1), dtype=tf.float32) return pos_encoding def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None): # calculate attention matmul_qk = tf.matmul(q, k, transpose_b=True) dk = tf.cast(shape_list(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) if mask is not None: scaled_attention_logits += mask * -1e4 if attention_mask is not None: # Apply the attention mask scaled_attention_logits = scaled_attention_logits + attention_mask attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # Mask heads if we want to if head_mask is not None: attention_weights = attention_weights * head_mask output = tf.matmul(attention_weights, v) return output, attention_weights class TFMultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model_size, num_heads, output_attentions=False, **kwargs): super().__init__(**kwargs) self.output_attentions = output_attentions self.num_heads = num_heads self.d_model_size = d_model_size self.depth = int(d_model_size / self.num_heads) self.Wq = tf.keras.layers.Dense(d_model_size, name="Wq") self.Wk = tf.keras.layers.Dense(d_model_size, name="Wk") self.Wv = tf.keras.layers.Dense(d_model_size, name="Wv") self.dense = tf.keras.layers.Dense(d_model_size, name="dense") def split_into_heads(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, inputs, training=False): v, k, q, mask, layer_past, attention_mask, head_mask, use_cache = inputs batch_size = shape_list(q)[0] q = self.Wq(q) k = self.Wk(k) v = self.Wv(v) q = self.split_into_heads(q, batch_size) k = self.split_into_heads(k, batch_size) v = self.split_into_heads(v, batch_size) if layer_past is not None: past_key, past_value = tf.unstack(layer_past, axis=0) k = tf.concat((past_key, k), axis=-2) v = tf.concat((past_value, v), axis=-2) # to cope with keras serialization # we need to cast `use_cache` to correct bool # if it is a tensor if tf.is_tensor(use_cache): if hasattr(use_cache, "numpy"): use_cache = bool(use_cache.numpy()) else: use_cache = True if use_cache is True: present = tf.stack((k, v), axis=0) else: present = (None,) output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask) scaled_attention = tf.transpose(output[0], perm=[0, 2, 1, 3]) attn = output[1] original_size_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model_size)) output = self.dense(original_size_attention) outputs = (output, present) if self.output_attentions: outputs = outputs + (attn,) return outputs def point_wise_feed_forward_network(d_model_size, dff, name=""): return tf.keras.Sequential( [tf.keras.layers.Dense(dff, activation="relu", name="0"), tf.keras.layers.Dense(d_model_size, name="2")], name="ffn", ) class TFEncoderLayer(tf.keras.layers.Layer): def __init__( self, d_model_size, num_heads, dff, rate=0.1, layer_norm_epsilon=1e-6, output_attentions=False, **kwargs ): super().__init__(**kwargs) self.multi_head_attention = TFMultiHeadAttention( d_model_size, num_heads, output_attentions, name="multi_head_attention" ) self.ffn = point_wise_feed_forward_network(d_model_size, dff, name="ffn") self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layernorm1") self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layernorm2") self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) def call(self, inputs, training=False): x, mask, layer_past, attention_mask, head_mask, use_cache = inputs normed = self.layernorm1(x) attn_outputs = self.multi_head_attention( [normed, normed, normed, mask, layer_past, attention_mask, head_mask, use_cache], training=training ) attn_output = attn_outputs[0] attn_output = self.dropout1(attn_output, training=training) out1 = x + attn_output out2 = self.layernorm2(out1) ffn_output = self.ffn(out2) ffn_output = self.dropout2(ffn_output, training=training) out2 = out1 + ffn_output outputs = (out2,) + attn_outputs[1:] return outputs @keras_serializable class TFCTRLMainLayer(tf.keras.layers.Layer): config_class = CTRLConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.d_model_size = config.n_embd self.num_layers = config.n_layer self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size) self.w = TFSharedEmbeddings( config.vocab_size, config.n_embd, initializer_range=config.initializer_range, name="w" ) self.dropout = tf.keras.layers.Dropout(config.embd_pdrop) self.h = [ TFEncoderLayer( config.n_embd, config.n_head, config.dff, config.resid_pdrop, config.layer_norm_epsilon, config.output_attentions, name="h_._{}".format(i), ) for i in range(config.n_layer) ] self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="layernorm") def get_input_embeddings(self): return self.w def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ raise NotImplementedError def call( self, inputs, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, use_cache=True, training=False, ): if isinstance(inputs, (tuple, list)): input_ids = inputs[0] past = inputs[1] if len(inputs) > 1 else past attention_mask = inputs[2] if len(inputs) > 2 else attention_mask token_type_ids = inputs[3] if len(inputs) > 3 else token_type_ids position_ids = inputs[4] if len(inputs) > 4 else position_ids head_mask = inputs[5] if len(inputs) > 5 else head_mask inputs_embeds = inputs[6] if len(inputs) > 6 else inputs_embeds use_cache = inputs[7] if len(inputs) > 7 else use_cache assert len(inputs) <= 8, "Too many inputs." elif isinstance(inputs, (dict, BatchEncoding)): input_ids = inputs.get("input_ids") past = inputs.get("past", past) attention_mask = inputs.get("attention_mask", attention_mask) token_type_ids = inputs.get("token_type_ids", token_type_ids) position_ids = inputs.get("position_ids", position_ids) head_mask = inputs.get("head_mask", head_mask) inputs_embeds = inputs.get("inputs_embeds", inputs_embeds) use_cache = inputs.get("use_cache", use_cache) assert len(inputs) <= 8, "Too many inputs." else: input_ids = inputs # If using past key value states, only the last tokens # should be given as an input if past is not None: if input_ids is not None: input_ids = input_ids[:, -1:] if inputs_embeds is not None: inputs_embeds = inputs_embeds[:, -1:] if token_type_ids is not None: token_type_ids = token_type_ids[:, -1:] if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) input_ids = tf.reshape(input_ids, [-1, input_shape[-1]]) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if past is None: past_length = 0 past = [None] * len(self.h) else: past_length = shape_list(past[0][0])[-2] if position_ids is None: position_ids = tf.range(past_length, input_shape[-1] + past_length, dtype=tf.int32)[tf.newaxis, :] position_ids = tf.tile(position_ids, [input_shape[0], 1]) # Attention mask. if attention_mask is not None: # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = tf.cast(attention_mask, tf.float32) attention_mask = (1.0 - attention_mask) * -10000.0 else: attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_layers if token_type_ids is not None: token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]]) token_type_embeds = self.w(token_type_ids, mode="embedding") token_type_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, tf.float32)) else: token_type_embeds = 0 position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]]) if inputs_embeds is None: inputs_embeds = self.w(input_ids, mode="embedding") seq_len = input_shape[-1] mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0) inputs_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, tf.float32)) pos_embeds = tf.gather(self.pos_encoding, position_ids) hidden_states = inputs_embeds + pos_embeds + token_type_embeds hidden_states = self.dropout(hidden_states, training=training) output_shape = input_shape + [shape_list(hidden_states)[-1]] presents = () all_hidden_states = () all_attentions = [] for i, (h, layer_past) in enumerate(zip(self.h, past)): if self.output_hidden_states: all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),) outputs = h([hidden_states, mask, layer_past, attention_mask, head_mask[i], use_cache], training=training) hidden_states, present = outputs[:2] if use_cache is True: presents = presents + (present,) if self.output_attentions: all_attentions.append(outputs[2]) hidden_states = self.layernorm(hidden_states) hidden_states = tf.reshape(hidden_states, output_shape) if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if use_cache is True: outputs = outputs + (presents,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:] all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions) outputs = outputs + (all_attentions,) return outputs class TFCTRLPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CTRLConfig pretrained_model_archive_map = TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "transformer" CTRL_START_DOCSTRING = r""" .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})` Parameters: config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ CTRL_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. If `past` is used, optionally only the last `input_ids` have to be input (see `past`). Indices can be obtained using :class:`transformers.CTRLTokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.encode_plus` for details. `What are input IDs? <../glossary.html#input-ids>`__ past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `past` output below). Can be used to speed up sequential decoding. If `past` is used, the user can optionally input only the last `input_ids` (those that don't have their past given to this model) of shape :obj:`(batch_size, 1)` instead of all `input_ids` of shape :obj:`(batch_size, sequence_length)`. attention_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token If `past` is used, optionally only the last `token_type_ids` have to be input (see `past`). `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. input_embeds (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `past` is used, optionally only the last `input_embeds` have to be input (see `past`). use_cache (:obj:`bool`): If `use_cache` is True, `past` key value states are returned and can be used to speed up decoding (see `past`). Defaults to `True`. training (:obj:`boolean`, `optional`, defaults to :obj:`False`): Whether to activate dropout modules (if set to :obj:`True`) during training or to de-activate them (if set to :obj:`False`) for evaluation. """ @add_start_docstrings( "The bare CTRL Model transformer outputting raw hidden-states without any specific head on top.", CTRL_START_DOCSTRING, ) class TFCTRLModel(TFCTRLPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFCTRLMainLayer(config, name="transformer") @add_start_docstrings_to_callable(CTRL_INPUTS_DOCSTRING) def call(self, inputs, **kwargs): r""" Return: :obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.CTRLConfig`) and inputs: last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the last layer of the model. past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (:obj:`tuple(tf.Tensor)` `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import CTRLTokenizer, TFCTRLModel tokenizer = CTRLTokenizer.from_pretrained('ctrl') model = TFCTRLModel.from_pretrained('ctrl') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ outputs = self.transformer(inputs, **kwargs) return outputs class TFCTRLLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @add_start_docstrings( """The CTRL Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, CTRL_START_DOCSTRING, ) class TFCTRLLMHeadModel(TFCTRLPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFCTRLMainLayer(config, name="transformer") self.lm_head = TFCTRLLMHead(config, self.transformer.w, name="lm_head") def get_output_embeddings(self): return self.lm_head.input_embeddings def prepare_inputs_for_generation(self, inputs, past, **kwargs): # only last token for inputs_ids if past is defined in kwargs if past: inputs = tf.expand_dims(inputs[:, -1], -1) return {"inputs": inputs, "past": past, "use_cache": kwargs["use_cache"]} @add_start_docstrings_to_callable(CTRL_INPUTS_DOCSTRING) def call(self, inputs, **kwargs): r""" Return: :obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.CTRLConfig`) and inputs: prediction_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import CTRLTokenizer, TFCTRLLMHeadModel tokenizer = CTRLTokenizer.from_pretrained('ctrl') model = TFCTRLLMHeadModel.from_pretrained('ctrl') input_ids = tf.constant([tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)]) outputs = model(input_ids) loss, logits = outputs[:2] """ transformer_outputs = self.transformer(inputs, **kwargs) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) outputs = (lm_logits,) + transformer_outputs[1:] return outputs # lm_logits, presents, (all hidden_states), (attentions)