# coding=utf-8 # Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Flaubert, based on XLM.""" import logging import unicodedata import six from .tokenization_xlm import XLMTokenizer logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "flaubert-small-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_small_cased/vocab.json", "flaubert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_base_uncased/vocab.json", "flaubert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_base_cased/vocab.json", "flaubert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_large_cased/vocab.json", }, "merges_file": { "flaubert-small-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_small_cased/merges.txt", "flaubert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_base_uncased/merges.txt", "flaubert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_base_cased/merges.txt", "flaubert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/flaubert/flaubert_large_cased/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "flaubert-small-cased": 512, "flaubert-base-uncased": 512, "flaubert-base-cased": 512, "flaubert-large-cased": 512, } PRETRAINED_INIT_CONFIGURATION = { "flaubert-small-cased": {"do_lowercase": False}, "flaubert-base-uncased": {"do_lowercase": True}, "flaubert-base-cased": {"do_lowercase": False}, "flaubert-large-cased": {"do_lowercase": False}, } def convert_to_unicode(text): """ Converts `text` to Unicode (if it's not already), assuming UTF-8 input. """ # six_ensure_text is copied from https://github.com/benjaminp/six def six_ensure_text(s, encoding="utf-8", errors="strict"): if isinstance(s, six.binary_type): return s.decode(encoding, errors) elif isinstance(s, six.text_type): return s else: raise TypeError("not expecting type '%s'" % type(s)) return six_ensure_text(text, encoding="utf-8", errors="ignore") class FlaubertTokenizer(XLMTokenizer): """ BPE tokenizer for Flaubert - Moses preprocessing & tokenization - Normalize all inputs text - argument ``special_tokens`` and function ``set_special_tokens``, can be used to add additional symbols \ (ex: "__classify__") to a vocabulary - `do_lowercase` controle lower casing (automatically set for pretrained vocabularies) This tokenizer inherits from :class:`~transformers.XLMTokenizer`. Please check the superclass for usage examples and documentation regarding arguments. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, do_lowercase=False, **kwargs): super().__init__(**kwargs) self.do_lowercase = do_lowercase self.do_lowercase_and_remove_accent = False def preprocess_text(self, text): text = text.replace("``", '"').replace("''", '"') text = convert_to_unicode(text) text = unicodedata.normalize("NFC", text) if self.do_lowercase: text = text.lower() return text def _tokenize(self, text, bypass_tokenizer=False): """ Tokenize a string given language code using Moses. Details of tokenization: - [sacremoses](https://github.com/alvations/sacremoses): port of Moses - Install with `pip install sacremoses` Args: - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) (bool). If True, we only apply BPE. Returns: List of tokens. """ lang = "fr" if lang and self.lang2id and lang not in self.lang2id: logger.error( "Supplied language code not found in lang2id mapping. Please check that your language is supported by the loaded pretrained model." ) if bypass_tokenizer: text = text.split() else: text = self.preprocess_text(text) text = self.moses_pipeline(text, lang=lang) text = self.moses_tokenize(text, lang=lang) split_tokens = [] for token in text: if token: split_tokens.extend([t for t in self.bpe(token).split(" ")]) return split_tokens